求二叉树中两个节点的最远距离

问题定义

如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。

计算一个二叉树的最大距离有两个情况:

  • 情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
  • 情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。

思路:

1,后序遍历每一节点,找出该节点到最右边的距离以及最左边的距离;

2,找到之和最大的即可。

//需保存左子树中最长距离、右子树最长距离和当前树的深度。

//以下提供两种方法。

#include<iostream>
#include<stack>
using namespace std;
int max(int l,int r)
{
	return l>r?l:r;
}
struct BinaryTreeNode
{
    int data;
    BinaryTreeNode* left;
    BinaryTreeNode* right;
    BinaryTreeNode(int x)
        :data(x)
        , left(NULL)
        , right(NULL)
    {}
};
class BinaryTree
{
protected:
    BinaryTreeNode* _root;
    BinaryTreeNode* _CreateBinaryTree(int* arr, int& index, int size)
    {
        BinaryTreeNode* root = NULL;
        if (index < size&&arr[index] != ‘#‘)
        {
            root = new BinaryTreeNode(arr[index]);
            root->left = _CreateBinaryTree(arr, ++index, size);
            root->right = _CreateBinaryTree(arr, ++index, size);
        }
        return root;
    }
     
public:
    BinaryTree()
        :_root(NULL)
    {}
    BinaryTree(int *arr, int size)
    {
        int index = 0;
        _root = _CreateBinaryTree(arr, index, size);
    }
    /*int MaxTwoNodeDistance()
    {
    	if(_root==NULL)
    	{
    		return 0;
		}
		int maxDistance=0;
		_Distance(_root,maxDistance);
		return maxDistance;
	}*/
	int MaxTwoNodeDistance()
	{
		if(_root==NULL)
			return 0;
		int maxLeft=0;
		int maxRight=0;
		return _Distance(_root,maxLeft,maxRight);
	}
    int Height()
    {
        return _Height(_root);
    }
    void PreOrder_Non()
    {
        if (_root == NULL)
            return;
        BinaryTreeNode* cur = _root;
        stack<BinaryTreeNode*> s;
        s.push(_root);
        while (!s.empty())
        {
            cur = s.top();
            printf("%d ", cur->data);
            s.pop();
            if (cur->right)
                s.push(cur->right);
            if (cur->left)
                s.push(cur->left);
        }
        cout << endl;
    }
protected:
	int _Distance(BinaryTreeNode* root,int& left,int &right)
	{
		if(root==NULL)
		{
			left=0;
			right=0;
			return 0;
		}
		int mll,mlr,mrl,mrr,dl,dr;
		if(root->left==NULL)
		{
			left=0;
			dl=0;
		}
		else
		{
			dl=_Distance(root->left,mll,mlr);
			left=max(mll,mlr)+1;
		}

		if(root->right==NULL)
		{
			right=0;
			dr=0;
		}
		else
		{
			dr=_Distance(root->right,mrl,mrr);
			right=max(mrl,mrr)+1;
		}
		return max(max(dl,dr),left+right);
	}
	/*int _Distance(BinaryTreeNode* root,int& max)
	{
		if(root==NULL)
			return 0;
		int maxLeft=0;
		int maxRight=0;
		if(root->left)
		{
			maxLeft=_Distance(root->left,max);
			if(maxLeft>max)
				max=maxLeft;
		}
		if(root->right)
		{
			maxRight=_Distance(root->right,max);
			if(maxRight>max)
				max=maxRight;
		}
		if(maxLeft+maxRight>max)
			max=maxLeft+maxRight;
		return maxLeft>maxRight?maxLeft+1:maxRight+1;
	}*/
    int _Height(BinaryTreeNode* root)
    {
        if (root == NULL)
            return 0;
        int left = _Height(root->left);
        int right = _Height(root->right);
        return left > right ? left + 1 : right + 1;
    }
  
};
int main()
{
	int arr1[]={1,2,4,5,‘#‘,‘#‘,‘#‘,7,‘#‘,‘#‘,3,‘#‘,6};
	int arr2[]={1,2,3,4,‘#‘,‘#‘,‘#‘,5,‘#‘,6};
	BinaryTree t1(arr1,sizeof(arr1)/sizeof(arr1[0]));
	t1.PreOrder_Non();
	cout<<t1.MaxTwoNodeDistance()<<endl;
	BinaryTree t2(arr2,sizeof(arr2)/sizeof(arr2[0]));
	t2.PreOrder_Non();
	cout<<t2.MaxTwoNodeDistance()<<endl;
}
时间: 2024-10-12 09:14:26

求二叉树中两个节点的最远距离的相关文章

求二叉树中两个节点的最低公共父节点

必须通过遍历查找一个节点的祖先集合,然后比较两个节点的祖先集合就可以找到最低的那个.这里采用后序遍历,并传入一个栈记录该节点的祖先节点.在每次访问一个节点时,先把这个节点压入栈,然后判断该节点是不是要查找的那个节点,如果是返回.接着查找它的左子树和右子树,当要查找的节点在它的左右子树中则返回.然后判断该节点与栈顶节点是否相同,是则弹出栈顶元素.这是因为相同就代表了在访问它的左右子树时没有添加新的节点,也就是说要查找的那个节点不在它的左右子树中,则该节点也就是不是要查找的节点的祖先. #inclu

求解二叉树中两个节点的最近公共祖先(LCA)

/************************************************************************/ /* 非递归的方法 下面是一个简单的复杂度为 O(n) 的算法,解决LCA问题 1) 找到从根到n1的路径,并存储在一个向量或数组中. 2)找到从根到n2的路径,并存储在一个向量或数组中. 3) 遍历这两条路径,直到遇到一个不同的节点,则前面的那个即为最低公共祖先. */ /*************************************

二叉树中两个节点的最近公共父节点

这是京东周六的笔试题目   当时不在状态,现在想来肯定是笔试就被刷掉了,权当做个纪念吧.  这个问题可以分为三种情况来考虑: 情况一:root未知,但是每个节点都有parent指针此时可以分别从两个节点开始,沿着parent指针走向根节点,得到两个链表,然后求两个链表的第一个公共节点,这个方法很简单,不需要详细解释的. 情况二:节点只有左.右指针,没有parent指针,root已知思路:有两种情况,一是要找的这两个节点(a, b),在要遍历的节点(root)的两侧,那么这个节点就是这两个节点的最

二叉树中两个节点的最近公共祖先节点

#include <iostream> using namespace std; template<class T> struct BinaryTreeNode {                 BinaryTreeNode< T>(const T& data)                                 :_data( data)                                 ,_left( NULL)         

【编程题目】求二叉树中节点的最大距离

第 11 题(树)求二叉树中节点的最大距离...如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数.写一个程序,求一棵二叉树中相距最远的两个节点之间的距离. 思路:二叉树结构中只设了左右子节点的指针. 设单个结点的深度为0. 用后序遍历,得到每个结点为根的子树的最大深度.maxdistance记录该结点(左子树深度+右子树深度 + 2)是否超过已有的最远距离,若超过更新. 关键:空指针的深度设为-1,这样避免了复杂的分类讨论. 树每个结

编程之美之求二叉树中节点的最大距离

题目:如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数.写一个程序求一棵二叉树中相距最远的两个节点之间的距离. 分析:树上分析的很清楚,计算一个二叉树的最大距离有两个情况: 1. 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点. 2. 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者. 但是树上的代码使用了额外的节点字段,这里给出我的代码,思路是一样的: struct BinaryTree { int valu

编程之美3.8 求二叉树中节点的最大距离

描述:如果把二叉树看成一个图,父子节点之间的连线看成双向的,定义“距离”为两个节点之间边的个数.求二叉树中相距最远的两个节点的距离. 思路:相距最远的两个节点一定是叶子节点,且这两个叶子节点的路径有两种情况: 1. 该路径经过root节点,则两个叶子节点分属root.left和root.right为根的子树,而且是两个子树中距离root.left和root.right最远的叶子节点: 2. 该路径不经过root节点,则这两个叶子节点的root.left或root.right上: 根据以上分析,参

11求二叉树中节点的最大距离

转载请注明出处:http://www.cnblogs.com/wuzetiandaren/p/4253605.html 声明:现大部分文章为寻找问题时在网上相互转载,此博是为自己做个记录记录,方便自己也方便有类似问题的朋友,本文的思想也许有所借鉴,但源码均为本人实现,如有侵权,请发邮件表明文章和原出处地址,我一定在文章中注明.谢谢. 题目:如果我们把二叉树看成一个图,一棵树显示是一颗有向无环图,定义"距离"为两节点之间边的个数(不考虑方向).写一个程序,求一棵二叉树中相距最远的两个节点

11.求二叉树中节点的最大距离

如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义 " 距离 " 为两节点之间边的个数.写一个程序,求一棵二叉树中相距最远的两个节点之间的距离,求二叉树中节点的最大距离 分析: 先画几个不同形状的二叉树,从例子中可以看出,相距最远的两个节点,一定是两个叶子节点,或者是一个叶子节点到它的根节点: 根据相距最远的两个节点一定是叶子节点这个规律,我们可以进一步讨论. 对于任意一个节点,以该节点为根,假设这个根有 K 个孩子节点,那么相距最远的两 个节点 U和 V之间的路