关联分析又称关联挖掘,就是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性或因果结构。关联分析的一个典型例子是购物篮分析。通过发现顾客放入购物篮中不同商品之间的联系,分析顾客的购买习惯。比如,67%的顾客在购买尿布的同时也会购买啤酒。通过了解哪些商品频繁地被顾客同时购买,可以帮助零售商制定营销策略。关联分析也可以应用于其他领域,如生物信息学、医疗诊断、网页挖掘和科学数据分析等。
1. 问题定义
图1 购物篮数据的二元表示
图1表示顾客的购物篮数据,其中每一行是每位顾客的购物记录,对应一个事务,而每一列对应一个项。令I={i_1, i_2, ... , i_d}是购物篮数据中所有项的集合,而T={t_1, t_2, ... , t_N}是所有事务的集合。每个事务t_i包含的项集都是I的子集。在关联分析中,包含0个或多个项的集合被称为项集(itemset)。所谓的关联规则是指形如X→Y的表达式,其中X和Y是不相交的项集。在关联分析中,有两个重要的概念——支持度(support)和置信度(confidence)。支持度确定规则可以用于给定数据集的频繁程度,而置信度确定Y在包含X的事务中出现的频繁程度。支持度(s)和置信度(c)这两种度量的形式定义如下:
公式1
其中,N是事务的总数。关联规则的支持度很低,说明该规则只是偶然出现,没有多大意义。另一方面,置信度可以度量通过关联规则进行推理的可靠性。因此,大多数关联分析算法采用的策略是:
(1)频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集。
(2)规则的产生:其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则。
2. 构建FP-tree
FP-growth算法通过构建FP-tree来压缩事务数据库中的信息,从而更加有效地产生频繁项集。FP-tree其实是一棵前缀树,按支持度降序排列,支持度越高的频繁项离根节点越近,从而使得更多的频繁项可以共享前缀。
图2 事务型数据库
图2表示用于购物篮分析的事务型数据库。其中,a,b,...,p分别表示客户购买的物品。首先,对该事务型数据库进行一次扫描,计算每一行记录中各种物品的支持度,然后按照支持度降序排列,仅保留频繁项集,剔除那些低于支持度阈值的项,这里支持度阈值取3,从而得到<(f:4),(c:4),(a:3),(b:3),(m:3,(p:3)>(由于支持度计算公式中的N是不变的,所以仅需要比较公式中的分子)。图2中的第3列展示了排序后的结果。
FP-tree的根节点为null,不表示任何项。接下来,对事务型数据库进行第二次扫描,从而开始构建FP-tree:
第一条记录<f,c,a,m,p>对应于FP-tree中的第一条分支<(f:1),(c:1),(a:1),(m:1),(p:1)>:
图3 第一条记录
由于第二条记录<f,c,a,b,m>与第一条记录有相同的前缀<f,c,a>,因此<f,c,a>的支持度分别加一,同时在(a:2)节点下添加节点(b:1),(m:1)。所以,FP-tree中的第二条分支是<(f:2),(c:2),(a:2),(h:1),(m:1)>:
图4 第二条记录
第三条记录<f,b>与前两条记录相比,只有一个共同前缀<f>,因此,只需要在(f:3)下添加节点<b:1>:
图5 第三条记录
第四条记录<c,b,p>与之前所有记录都没有共同前缀,因此在根节点下添加节点(c:1),(b:1),(p:1):
图6 第四条记录
类似地,将第五条记录<f,c,a,m,p>作为FP-tree的一个分支,更新相关节点的支持度:
图7 第五条记录
为了便于对整棵树进行遍历,建立一张项的头表(an item header table)。这张表的第一列是按照降序排列的频繁项。第二列是指向该频繁项在FP-tree中节点位置的指针。FP-tree中每一个节点还有一个指针,用于指向相同名称的节点:
图8 FP-tree
综上,FP-tree的节点可以定义为:
class TreeNode { private: String name; // 节点名称 int count; // 支持度计数 TreeNode *parent; // 父节点 Vector<TreeNode *> children; // 子节点 TreeNode *nextHomonym; // 指向同名节点 ... }
3. 从FP-tree中挖掘频繁模式(Frequent Patterns)
我们从头表的底部开始挖掘FP-tree中的频繁模式。在FP-tree中以p结尾的节点链共有两条,分别是<(f:4),(c:3),(a:3),(m:2),(p:2)>和<(c:1),(b:1),(p:1)>。其中,第一条节点链表表示客户购买的物品清单<f,c,a,m,p>在数据库中共出现了两次。需要注意到是,尽管<f,c,a>在第一条节点链中出现了3次,单个物品<f>出现了4次,但是它们与p一起出现只有2次,所以在条件FP-tree中将<(f:4),(c:3),(a:3),(m:2),(p:2)>记为<(f:2),(c:2),(a:2),(m:2),(p:2)>。同理,第二条节点链表示客户购买的物品清单<c,b,p>在数据库中只出现了一次。我们将p的前缀节点链<(f:2),(c:2),(a:2),(m:2)>和<(c:1),(b:1)>称为p的条件模式基(conditional pattern base)。p的条件FP-tree为:
图9 p的条件FP-tree
对于条件FP-tree的挖掘分为两步,首先判断当前节点是否满足阈值要求,这里(p:3)满足支持度阈值的要求,所以直接输出频繁项(p:3)。然后,检查当前节点的条件FP-tree中是否有满足阈值要求的节点,如果没有,则输出当前频繁项集,并退出递归;如果有,则依次从条件FP-tree中选择一个节点,递归挖掘条件FP-tree。下面将具体讨论这个过程。从图9可以看到p的条件FP-tree中只有(c:3)满足支持度阈值的要求,所以以p结尾的频繁项集只有(p:3),(cp:3)。
在FP-tree中以m结尾的节点链共有两条,分别是<(f:4),(c:3),(a:3),(m:2)>和<(f:4),(c:3),(a:3),(b:1),(m:1)>。所以m的条件模式基是<(f:2),(c:2),(a:2)>和<(f:1),(c:1),(a:1),(b:1)>。由于(b:1)不满足支持度阈值,所以只需要考虑<(f:2),(c:2),(a:2)>和<(f:1),(c:1),(a:1)>合并后的频繁项集<(f:3),(c:3),(a:3)>:
图10 m的条件FP-tree
与p不同,m的条件FP-tree中有3个节点,所以需要多次递归地挖掘频繁项集mine(<(f:3),(c:3),(a:3)|(m:3)>)。按照<(a:3),(c:3),(f:3)>的顺序递归调用mine(<(f:3),(c:3)|a,m>),mine(<(f:3)|c,m>),mine(null|f,m)。由于(m:3)满足支持度阈值要求,所以以m结尾的频繁项集有{(m:3)}。
图11 节点(a,m)的条件FP-tree
从图11可以看出,节点(a,m)的条件FP-tree有2个节点,需要进一步递归调用mine(<(f:3)|c,a,m>)和mine(<null|f,a,m>)。进一步递归mine(<(f:3)|c,a,m>)生成mine(<null|f,c,a,m>)。因此,以(a,m)结尾的频繁项集有{(am:3),(fam:3),(cam:3),(fcam:3)}。
图 12 节点(c,m)的条件FP-tree
从图12可以看出,节点(c,m)的条件FP-tree只有1个节点,所以只需要递归调用mine(<null|f,c,m>)。因此,以(c,m)结尾的频繁项集有{(cm:3),(fcm:3)}。同理,以(f,m)结尾的频繁项集有{(fm:3)}。
在FP-tree中以b结尾的节点链共有三条,分别是<(f:4),(c:3),(a:3),(b:1)>,<(f:4),(b:1)>和<(c:1),(b:1)>。由于节点b的条件模式基<(f:1),(c:1),(a:1)>,<(f:1)>和<(c:1)>都不满足支持度阈值,所以不需要再递归。因此,以b结尾的频繁项集只有(b:3)。
同理可得,以a结尾的频繁项集{(fa:3),(ca:3),(fca:3),(a:3)},以c结尾的频繁项集{(fc:3),(c:4)},以f结尾的频繁项集{(f:4)}。
4. 讨论
在韩家炜教授提出FP-growth算法之前,关联分析普遍采用Apriori及其变形算法。但是,Apriori及其变形算法需要多次扫描数据库,并需要生成指数级的候选项集,性能并不理想。FP-growth算法提出利用了高效的数据结构FP-tree,不再需要多次扫描数据库,同时也不再需要生成大量的候选项。
对于单路径的FP-tree其实不需要递归,通过排列组合可以直接生成。韩家炜教授在其论文中提到了针对单路径的优化算法。论文中也提到了面对大数据时,如何调整FP-growth算法使之适应数据量。
5. 参考资料
[1] Mining Frequent Patterns without Candidate Generation. Jiawei Han, Jian Pei, and Yiwen Yin. Data Mining and Knowledge Discovery. Volume 8 Issue 1. January 2004. [PDF]
[2] Frequent Pattern 挖掘之二(FP Growth算法). yfx416. Software Engineer in NRC. 2011. [Link]
[3] FP-Tree算法的实现. Orisun. 华夏35度. 2011. [Link]
关联分析:FP-Growth算法