【组合数的唯一分解定理】Uva1635

给出n、m,求得最终求和数列an=C(n-1,0)*x+ C(n-1,1)*x2+...+C(n-1,n-1)*xn;

若xi与m无关,则an除以m的余数与xi无关,即余数不含xi的项;

输入:n,m

输出:ans     //无关项的总数;

   xi1 xi2 ...  //无关项,升序

Tips:

对于组合数的唯一分解定理

由于10^5级别的组合数必然会存在很大的项(long long甚至double都无法保存),要求得其唯一分解式只能采取按递推式分步分解,代码如下:

bool check(int n, int j)//按照递推公式来计算C(n, j)唯一分解式各项的指数
{
    int num = fac[0][0]; //此为上步求得的素因子总数
    int a = n - j + 1;
    int b = j;
    for (int i = 1; i <= num; i++)
    {
        int p = fac[i][0];
        int&q = fac_c[i];
        ///计算分解式各项指数
        for (; a%p == 0; a /= p, q++);
        for (; b%p == 0; b /= p, q--);
    }
}

求完后比较各素因子指数与m唯一分解式的对应指数的大小即可

时间: 2024-11-05 19:41:46

【组合数的唯一分解定理】Uva1635的相关文章

hdu4497-GCD and LCM-(欧拉筛+唯一分解定理+组合数)

GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3409    Accepted Submission(s): 1503 Problem Description Given two positive integers G and L, could you tell me how many solutions of

UVa 10375 Choose and divide (唯一分解定理)

题目 题目大意 已知\(C(m, n) = m! / (n!(m - n)!)\), 输入整数\(p\), \(q\), \(r\), \(s\)(\(p ≥ q\), \(r ≥ s\), \(p\), \(q\), \(r\), \(s ≤ 10000\)), 计算\(C(p, q) / C(r, s)\).输出保证不超过\(10^8\), 保留\(5\)位小数 题解 这道题还是挺水吧... 首先如果直接算出\(C(p, q)\)和\(C(r, s)\)是肯定不可能的, C++存不下这么大的

HDU 1452 Happy 2004(唯一分解定理)

题目链接:传送门 题意: 求2004^x的所有约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)*-* (pn^0+pn^1^-+pn ) 代码如下: #include <iostream> #include <cstring> #include <algorithm> #include <cstdio> using namespace std; const

NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现 在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整 数 x 满足: 1. x 和 a0 的最大公约

欧几里德算法和唯一分解定理

刘汝佳<入门经典>上提供了一道经典的题目: 除法表达式,在NYOJ上可以找到原题,题号1013 描述 给出一个这样的除法表达式:X1/X2/X3/···/Xk,其中Xi是正整数.除法表达式应当按照从左到右的顺序求和,例如表达式1/2/1/2值为1/4.但是可以在表达式中嵌入括号以改变计算顺序,例如表达式(1/2)/(1/2)的值为1. 输入 首先输入一个N,表示有N组测试数据, 每组数据输入占一行,为一个除法 表 达式,输入保证合法. 使表达式的值为整数.k<=10000,Xi<=

Coderforce-574C Bear and Poker(素数唯一分解定理)

题目大意:给出n个数,问能不能通过让所有的数都乘以2的任意幂或乘以3的任意幂,使这n个数全都相等. 题目分析:最终n个数都是相等的,假设那个数为x,根据素数唯一分解定理,x能分解成m*2p3q.所以,只需将所有的a[i]一直除以2并且一直除以3,最终只需判断这n个数是否全部相等即可. 代码如下: # include<iostream> # include<cstdio> # include<cmath> # include<string> # include

唯一分解定理(算术基本定理)及应用

算术基本定理:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积 N = p1^a1 * p2^a2 * p3^a3 * ... * pn^an (其中p1.p2.... pn为N的因子,a1.a2.... .an分别为因子的指数) 这样的分解称为 N 的标准分解式 应用: (1)一个大于1的正整数N,如果它的标准分解式为: N = p1^a1 * p2^a2 * p3^a3 * ... * pn^an (2)N的因子个数     M(N)= (1 + a1)*(1

uva 10375 唯一分解定理 筛法求素数【数论】

唯一分解理论的基本内容: 任意一个大于1的正整数都能表示成若干个质数的乘积,且表示的方法是唯一的.换句话说,一个数能被唯一地分解成质因数的乘积.因此这个定理又叫做唯一分解定理. 举个栗子:50=(2^1)*(5^2) 题目一般的思路就是要把素数表打出来,eg上面的例子 e={1,0,2,0,0......} 下面是两个题目,仅说说大致的思想: 题目一: E=(X1*X3*X4* ...*Xk)/X2   判断E是不是整数 如果把(X1*X3*X4* ...*Xk)分解成素数相乘,将X2也分解成素

POJ1845Sumdiv(求所有因子和 + 唯一分解定理)

Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 17387   Accepted: 4374 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 99