《机器学习》学习笔记(二):神经网络

在解决一些简单的分类问题时,线性回归与逻辑回归就足以应付,但面对更加复杂的问题时(例如对图片中车的类型进行识别),运用之前的线性模型可能就得不到理想的结果,而且由于更大的数据量,之前方法的计算量也会变得异常庞大。因此我们需要学习一个非线性系统:神经网络。

我在学习时,主要通过Andrew Ng教授提供的网络,而且文中多处都有借鉴Andrew Ng教授在mooc提供的资料。

转载请注明出处:http://blog.csdn.net/u010278305

神经网络在解决一些复杂的非线性分类问题时,相对于线性回归、逻辑回归,都被证明是一个更好的算法。其实神经网络也可以看做的逻辑回归的组合(叠加,级联等)。

一个典型神经网络的模型如下图所示:

上述模型由3个部分组成:输入层、隐藏层、输出层。其中输入层输入特征值,输出层的输出作为我们分类的依据。例如一个20*20大小的手写数字图片的识别举例,那么输入层的输入便可以是20*20=400个像素点的像素值,即模型中的a1;输出层的输出便可以看做是该幅图片是0到9其中某个数字的概率。而隐藏层、输出层中的每个节点其实都可以看做是逻辑回归得到的。逻辑回归的模型可以看做这样(如下图所示):

有了神经网络的模型,我们的目的就是求解模型里边的参数theta,为此我们还需知道该模型的代价函数以及每一个节点的“梯度值”。

代价函数的定义如下:

代价函数关于每一个节点处theta的梯度可以用反向传播算法计算出来。反向传播算法的思想是由于我们无法直观的得到隐藏层的输出,但我们已知输出层的输出,通过反向传播,倒退其参数。

我们以以下模型举例,来说明反向传播的思路、过程:

该模型与给出的第一个模型不同的是,它具有两个隐藏层。

为了熟悉这个模型,我们需要先了解前向传播的过程,对于此模型,前向传播的过程如下:

其中,a1,z2等参数的意义可以参照本文给出的第一个神经网络模型,类比得出。

然后我们定义误差delta符号具有如下含义(之后推导梯度要用):

误差delta的计算过程如下:

然后我们通过反向传播算法求得节点的梯度,反向传播算法的过程如下:

有了代价函数与梯度函数,我们可以先用数值的方法检测我们的梯度结果。之后我们就可以像之前那样调用matlab的fminunc函数求得最优的theta参数。

需要注意的是,在初始化theta参数时,需要赋予theta随机值,而不能是固定为0或是什么,这就避免了训练之后,每个节点的参数都是一样的。

下面给出计算代价与梯度的代码:

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices.
%
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);

% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%
J_tmp=zeros(m,1);
for i=1:m
    y_vec=zeros(num_labels,1);
    y_vec(y(i))=1;
    a1 = [ones(1, 1) X(i,:)]';
    z2=Theta1*a1;
    a2=sigmoid(z2);
    a2=[ones(1,size(a2,2)); a2];
    z3=Theta2*a2;
    a3=sigmoid(z3);
    hThetaX=a3;
    J_tmp(i)=sum(-y_vec.*log(hThetaX)-(1-y_vec).*log(1-hThetaX));
end
J=1/m*sum(J_tmp);
J=J+lambda/(2*m)*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));

Delta1 = zeros( hidden_layer_size, (input_layer_size + 1));
Delta2 = zeros( num_labels, (hidden_layer_size + 1));
for t=1:m
    y_vec=zeros(num_labels,1);
    y_vec(y(t))=1;
    a1 = [1 X(t,:)]';
    z2=Theta1*a1;
    a2=sigmoid(z2);
    a2=[ones(1,size(a2,2)); a2];
    z3=Theta2*a2;
    a3=sigmoid(z3);
    delta_3=a3-y_vec;
    gz2=[0;sigmoidGradient(z2)];
    delta_2=Theta2'*delta_3.*gz2;
    delta_2=delta_2(2:end);
    Delta2=Delta2+delta_3*a2';
    Delta1=Delta1+delta_2*a1';
end
Theta1_grad=1/m*Delta1;
Theta2_grad=1/m*Delta2;

Theta1(:,1)=0;
Theta1_grad=Theta1_grad+lambda/m*Theta1;
Theta2(:,1)=0;
Theta2_grad=Theta2_grad+lambda/m*Theta2;
% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];

end

最后总结一下,对于一个典型的神经网络,训练过程如下:

按照这个步骤,我们就可以求得神经网络的参数theta。

转载请注明出处:http://blog.csdn.net/u010278305

时间: 2024-11-13 23:27:06

《机器学习》学习笔记(二):神经网络的相关文章

吴恩达“机器学习”——学习笔记二

定义一些名词 欠拟合(underfitting):数据中的某些成分未被捕获到,比如拟合结果是二次函数,结果才只拟合出了一次函数. 过拟合(overfitting):使用过量的特征集合,使模型过于复杂. 参数学习算法(parametric learning algorithms):用固定的参数进行数据的拟合.比如线性回归. 非参数学习算法(non-parametric learning algorithms):使用的参数随着训练样本的增多而增多. 局部加权回归(locally weighted r

Caliburn.Micro学习笔记(二)----Actions

Caliburn.Micro学习笔记(二)----Actions 上一篇已经简单说了一下引导类和简单的控件绑定 我的上一个例子里的button自动匹配到ViewModel事件你一定感觉很好玩吧 今天说一下它的Actions,看一下Caliburn.Micro给我们提供了多强大的支持 我们还是从做例子开始 demo的源码下载在文章的最后 例子1.无参数方法调用 点击button把textBox输入的文本弹出来 如果textbox里没有文本button不可点,看一下效果图 看一下前台代码 <Stac

2. 蛤蟆Python脚本学习笔记二基本命令畅玩

2. 蛤蟆Python脚本学习笔记二基本命令畅玩 本篇名言:"成功源于发现细节,没有细节就没有机遇,留心细节意味着创造机遇.一件司空见惯的小事或许就可能是打开机遇宝库的钥匙!" 下班回家,咱先来看下一些常用的基本命令. 欢迎转载,转载请标明出处:http://blog.csdn.net/notbaron/article/details/48092873 1.  数字和表达式 看下图1一就能说明很多问题: 加法,整除,浮点除,取模,幂乘方等.是不是很直接也很粗暴. 关于上限,蛤蟆不太清楚

小猪的数据结构学习笔记(二)

小猪的数据结构学习笔记(二) 线性表中的顺序表 本节引言: 在上个章节中,我们对数据结构与算法的相关概念进行了了解,知道数据结构的 逻辑结构与物理结构的区别,算法的特性以及设计要求;还学了如何去衡量一个算法 的好坏,以及时间复杂度的计算!在本节中我们将接触第一个数据结构--线性表; 而线性表有两种表现形式,分别是顺序表和链表;学好这一章很重要,是学习后面的基石; 这一节我们会重点学习下顺序表,在这里给大家一个忠告,学编程切忌眼高手低,看懂不代表自己 写得出来,给出的实现代码,自己要理解思路,自己

JavaScript--基于对象的脚本语言学习笔记(二)

第二部分:DOM编程 1.文档象模型(DOM)提供了访问结构化文档的一种方式,很多语言自己的DOM解析器. DOM解析器就是完成结构化文档和DOM树之间的转换关系. DOM解析器解析结构化文档:将磁盘上的结构化文档转换成内存中的DOM树 从DOM树输出结构化文档:将内存中的DOM树转换成磁盘上的结构化文档 2.DOM模型扩展了HTML元素,为几乎所有的HTML元素都新增了innerHTML属性,该属性代表该元素的"内容",即返回的某个元素的开始标签.结束标签之间的字符串内容(不包含其它

马哥学习笔记二十四——分布式复制快设备drbd

DRBD: 主从 primary: 可执行读.写操作 secondary: 文件系统不能挂载 DRBD: dual primay, 双主(基于集群文件系统的高可用集群) 磁盘调度器:合并读请求,合并写请求: Procotol:drbd数据同步协议 A: Async, 异步  数据发送到本机tcp/ip协议栈 B:semi sync, 半同步  数据发送到对方tcp/ip协议 C:sync, 同步  数据到达对方存储设备 DRBD Source: DRBD资源 资源名称:可以是除了空白字符外的任意

【Unity 3D】学习笔记二十八:unity工具类

unity为开发者提供了很多方便开发的工具,他们都是由系统封装的一些功能和方法.比如说:实现时间的time类,获取随机数的Random.Range( )方法等等. 时间类 time类,主要用来获取当前的系统时间. using UnityEngine; using System.Collections; public class Script_04_13 : MonoBehaviour { void OnGUI() { GUILayout.Label("当前游戏时间:" + Time.t

Spring Batch学习笔记二

此系列博客皆为学习Spring Batch时的一些笔记: Spring Batch的架构 一个Batch Job是指一系列有序的Step的集合,它们作为预定义流程的一部分而被执行: Step代表一个自定义的工作单元,它是Job的主要构件块:每一个Step由三部分组成:ItemReader.ItemProcessor.ItemWriter:这三个部分将执行在每一条被处理的记录上,ItemReader读取每一条记录,然后传递给ItemProcessor处理,最后交给ItemWriter做持久化:It

angular学习笔记(二十八)-$http(6)-使用ngResource模块构建RESTful架构

ngResource模块是angular专门为RESTful架构而设计的一个模块,它提供了'$resource'模块,$resource模块是基于$http的一个封装.下面来看看它的详细用法 1.引入angular-resource.min.js文件 2.在模块中依赖ngResourece,在服务中注入$resource var HttpREST = angular.module('HttpREST',['ngResource']); HttpREST.factory('cardResource

Swift学习笔记(二)参数类型

关于参数类型,在以前的编程过程中,很多时间都忽视了形参与实参的区别.通过这两天的学习,算是捡回了漏掉的知识. 在swift中,参数有形参和实参之分,形参即只能在函数内部调用的参数,默认是不能修改的,如果想要修改就需要在参数前添加var声明. 但这样的声明过后,仍旧不会改变实参的值,这样就要用到inout了,传递给inout的参数类型必须是var类型的,不能是let类型或者字面类型,(字面类型是在swift中常提的一个术语,个人认为就是赋值语句,也不能修改)而且在传递过程中,要用传值符号"&