PIC2, Histograms

As a first guess,you can start with Scott’s rule for the bin width

w = 3.5σ/ 3√n,

where σ is the standard deviation for the entire data set and n is the number of points.

This rule assumes that the data follows a Gaussian distribution;

otherwise, it is likely to give a bin width that is too wide.

See the end of this chapter for more information on the standard deviation

直方图刻度的值估计,前提是高斯分布。

The other parameter that we need to fix (whether we realize it or not) is the alignment of the bins on the x axis.

Let’s say we fixed the width of the bins at 1. Where do we now place the first bin?

We could put it flush left, so that its left edge is at 0, or we could center it at 0.

In fact, we can move all bins by half a bin width in either direction.

第一个bin放在哪里?

17页

时间: 2024-11-23 01:31:17

PIC2, Histograms的相关文章

PIC2, Kernel Density Estimates

核函数估计 Demo I import sys,re,os import numpy as np from scipy import stats import matplotlib.pylab as plt if __name__ == '__main__': # random data grade = [np.random.rand(100) * 100] fig = plt.figure() # KDE ax1 = fig.add_subplot(211) ind = np.arange(0

Learning OpenCV Lecture 3 (Counting the Pixels with Histograms)

In this chapter, we will cover: Computing the image histogram Applying look-up tables to modify image appearance Equalizing the image histogram Backprojecting a histogram to detect specific image content Using the mean shift algorithm to find an obje

Face recognition using Histograms of Oriented Gradients

Face recognition using Histograms of Oriented Gradients 这篇论文的主要内容是将Hog算子应用到人脸识别上. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/40757997 1. Main Contribution Extract Hog descriptors from a regular grid. Fusion of HOG descriptors at different

[2005CVPR]Histograms of Oriented Gradients for Human Detection

HOG这种方法跟边缘方向直方图,尺度不变特征变换(SIFT)以及形状上下文方法(shape contexts)有很多相似之处,但与它们的不同点是:HOG描述器是在一个网格密集的大小统一的细胞单元上计算,而且为了提高性能,还采用了重叠的局部对比度归一化.HOG方法是在图像的局部细胞单元上操作,所以它对图像几何和光学的形变都能保持很好的不变性. 算法步骤step1:Gamma/Colour Normalization 作者分别在灰度空间.RGB色彩空间和LAB色彩空间上对图像进行色彩和 伽马归一化,

行人检測之HOG特征(Histograms of Oriented Gradients)

之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histograms of Oriented Gradients)特征的基本思想:The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of

(转)梯度方向直方图HOG(Histograms of Oriented Gradients )

HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.此方法使用了图像的本身的梯度方向特征,类似于边缘方向直方图方法,SIFT描述子,和上下文形状方法,但其特征在于其在一个网格密集的大小统一的方格单元上计算,而且为了提高精确度使用了重叠的局部对比度归一化的方法. 这篇文章的作者Navneet Dalal和Bi

Histograms of Oriented Gradients for Human Detection

Histograms of Oriented Gradients for Human Detection 本文是论文笔记. 转载注明:http://blog.csdn.net/stdcoutzyx/article/details/40299383 Hog算子进行行人检测,是05年在CVPR上发表的经典文章.使用Hog算子提取特征,然后使用SVM来进行分类. 1. Definition Hog Descriptor:locally normalized histogram of gradient

[Machine Learning for Trading] {ud501} Lesson 7: 01-06 Histograms and scatter plots

A closer look at daily returns Histogram of daily returns gaussian => kurtosis = 0 How to plot a histogram Computing histogram statistics Select the option that best describes the relationship between XYZ and SPY. Note: These are histograms of daily

Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图

AbstractObject detection has seen huge progress in recent years, much thanks to the heavily-engineered Histograms of Oriented Gradients (HOG) features. Can we go beyond gradients and do better than HOG? We provide an affirmative answer by proposing a