1.背包问题:
①最优装载问题:把物体重量从小到大排列,依次选择每个物体,只顾眼前,却能得到最优解。
②部分背包问题:把物体的“价值除以重量的值”从小到大排序,一次选择每个物体(贪心只能对一个变量贪心,这是一种巧妙的转换)。
③乘船问题:只让眼前的浪费最少。(注意是让什么最少,是让浪费最少!)
2.区间相关问题(排序:排左边还是右边?):
①选择不相交区间:
②区间选点问题:
③区间覆盖问题:
3.定义:
在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。一般和排序结合使用,排序排的关键变量的选取是重中之重。
对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。
4.问题特点:
贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
⑴随着算法的进行,将积累起其它两个集合:一个包含已经被考虑过并被选出的候选对象,另一个包含已经被考虑过但被丢弃的候选对象。
⑵有一个函数来检查一个候选对象的集合是否提供了问题的解答。该函数不考虑此时的解决方法是否最优。
⑶还有一个函数检查是否一个候选对象的集合是可行的,也即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样,此时不考虑解决方法的最优性。
⑷选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。
⑸最后,目标函数给出解的值。
⑹为了解决问题,需要寻找一个构成解的候选对象集合,它可以优化目标函数,贪婪算法一步一步的进行。起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是否构成解。如果贪婪算法正确工作,那么找到的第一个解通常是最优的。
5.重要性质:
①贪心选择性质:
所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,换句话说,当考虑做何种选择的时候,我们只考虑对当前问题最佳的选择而不考虑子问题的结果。这是贪心算法可行的第一个基本要素。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。
②最优子结构性质:
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用贪心算法求解的关键特征。
6.哈弗曼编码:
①该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。
②把每个字符看做一个单节点子树放在一个树集合中,每棵子树的权值等于相应字符的频率。每次取权值最小的两颗子树合并成一颗新树,并重新放到集合中。新树的权值等于两棵子树权值之和。
8.4 贪心法