盘子序列
【题目描述】
有 n 个盘子。盘子被生产出来后,被按照某种顺序摞在一起。初始盘堆中如果一
个盘子比所有它上面的盘子都大,那么它是安全的,否则它是危险的。称初始盘堆为
A,另外有一个开始为空的盘堆 B。为了掩盖失误,生产商会对盘子序列做一些“处
理”,每次进行以下操作中的一个:(1)将 A 最上面的盘子放到 B 最上面;(2)将 B 最上
面的盘子给你。在得到所有n个盘子之后,你需要判断初始盘堆里是否有危险的盘子。
【输入格式】
输入文件包含多组数据(不超过 10 组)
每组数据的第一行为一个整数 n
接下来 n 个整数,第 i 个整数表示你收到的第 i 个盘子的大小
【输出格式】
对于每组数据,如果存在危险的盘子,输出”J”,否则输出”Y”
【样例输入】
3
2 1 3
3
3 1 2
【样例输出】
Y
J
【数据范围】
20%的数据保证 n<=8
80%的数据保证 n<=1,000
100%的数据保证 1<=n<=100,000,0<盘子大小<1,000,000,000 且互不相等
思路
倒序栈模拟;
代码实现
1 #include<cstdio> 2 #include<cstring> 3 const int maxn=1e5+10; 4 int n; 5 int a[maxn],b[maxn],bs,c[maxn],cs; 6 int main(){ 7 freopen("disk.in","r",stdin); 8 freopen("disk.out","w",stdout); 9 while(scanf("%d",&n)!=EOF){ 10 for(int i=1;i<=n;i++) scanf("%d",&a[i]); 11 for(int i=n;i>0;i--){ 12 if(!bs||b[bs]<a[i]) b[++bs]=a[i]; 13 else while(bs&&b[bs]>a[i]) c[++cs]=b[bs--]; 14 } 15 while(bs) c[++cs]=b[bs--]; 16 for(bs=2;bs<=n;bs++) if(c[bs]>c[bs-1]) break; 17 if(bs>n) puts("Y"); 18 else puts("J"); 19 bs=cs=0; 20 memset(b,0,sizeof(b)); 21 memset(c,0,sizeof(c)); 22 } 23 return 0; 24 }
lazy的不想优化逻辑了。
四轮车
【题目描述】
在地图上散落着 n 个车轮,小 J 想用它们造一辆车。要求如下:
1. 一辆车需要四个车轮,且四个车轮构成一个正方形
2. 车轮不能移动
你需要计算有多少种造车的方案(两个方案不同当且仅当所用车轮不全相同,坐
标相同的两个车轮视为不同车轮)。
【输入格式】
第一行一个整数 n
接下来 n 行,每行两个整数 x y,表示在(x,y)处有一个车轮
【输出格式】
一行一个整数,表示方案数
【样例输入】
9
0 0
1 0
2 0
0 2
1 2
2 2
0 1
1 1
2 1
【样例输出】
6
【数据范围】
30%的数据保证 n ≤ 30
100%的数据保证 1 ≤ n ≤ 1000;|x|,|y| < 20000
思路
枚举
点名
【题目描述】
在J班的体育课上,同学们常常会迟到几分钟,但体育老师的点名却一直很准时。
老师只关心同学的身高,他会依次询问当前最高的身高,次高的身高,第三高的身高,
等等。在询问的过程中,会不时地有人插进队伍里。你需要回答老师每次的询问。
【输入格式】
第一行两个整数 n m,表示先后有 n 个人进队,老师询问了 m 次
第二行 n 个整数,第 i 个数 Ai 表示第 i 个进入队伍的同学的身高为 Ai
第三行 m 个整数,第 j 个数 Bj 表示老师在第 Bj 个同学进入队伍后有一次询问
【输出格式】
m 行,每行一个整数,依次表示老师每次询问的答案。数据保证合法
【样例输入】
7 4
9 7 2 8 14 1 8
1 2 6 6
【样例输出】
9
9
7
8
【样例解释】
(9){No.1 = 9}; (9 7){No.2 = 9}; (9 7 2 8 14 1){No.3 = 7; No.4 = 8}
【数据范围】
40%的数据保证 n ≤ 1000
100%的数据保证 1 ≤ m ≤ n ≤ 30000;0 ≤ Ai < 2 32
思路
splay裸题,好吧我splay卡常数了,