谱聚类方法-MATLAB

Matlab提供了两种方法进行聚类分析。

一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;

另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。

1.Matlab中相关函数介绍

1.1  pdist函数

调用格式:Y=pdist(X,’metric’)

说明:用 ‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’

X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。

metric’取值如下:

‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;

‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;

‘minkowski’:明可夫斯基距离;‘cosine’:

‘correlation’:                ‘hamming’:

‘jaccard’:                   ‘chebychev’:Chebychev距离。

1.2  squareform函数

调用格式:Z=squareform(Y,..)

说明:  强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。

1.3  linkage函数

调用格式:Z=linkage(Y,’method’)

说    明:用‘method’参数指定的算法计算系统聚类树。

Y:pdist函数返回的距离向量;

method:可取值如下:

‘single’:最短距离法(默认);  ‘complete’:最长距离法;

‘average’:未加权平均距离法;  ‘weighted’: 加权平均法;

‘centroid’: 质心距离法;      ‘median’:加权质心距离法;

‘ward’:内平方距离法(最小方差算法)

返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。

1.4  dendrogram函数

调用格式:[H,T,…]=dendrogram(Z,p,…)

说明:生成只有顶部p个节点的冰柱图(谱系图)。

1.5  cophenet函数

调用格式:c=cophenetic(Z,Y)

说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。

1.6  cluster 函数

调用格式:T=cluster(Z,…)

说明:根据linkage函数的输出Z 创建分类。

1.7  clusterdata函数

调用格式:T=clusterdata(X,…)

说明:根据数据创建分类。

T=clusterdata(X,cutoff)与下面的一组命令等价:

Y=pdist(X,’euclid’);

Z=linkage(Y,’single’);

T=cluster(Z,cutoff);

2. Matlab程序

2.1 一次聚类法

X=[11978 12.5 93.5 31908;…;57500 67.6 238.015900];

T=clusterdata(X,0.9)

2.2  分步聚类

Step1  寻找变量之间的相似性

用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。

X2=zscore(X);  %标准化数据

Y2=pdist(X2);  %计算距离

Step2   定义变量之间的连接

Z2=linkage(Y2);

Step3  评价聚类信息

C2=cophenet(Z2,Y2);       //0.94698

Step4 创建聚类,并作出谱系图

T=cluster(Z2,6);

H=dendrogram(Z2);

分类结果:{加拿大},{中国,美国,澳大利亚},{日本,印尼},{巴西},{前苏联}

剩余的为一类。

时间: 2024-10-10 13:55:22

谱聚类方法-MATLAB的相关文章

理解矩阵及谱聚类小记

最近看了一些矩阵和谱聚类的知识,特在此简单记录一下.详细可以先看下参考文献. 首先看到的是孟岩写的三篇<理解矩阵>. 一:理解矩阵(一) 1:传统书籍空间的定义:存在一个集合,在这个集合上定义某某概念,然后满足某些性质",就可以被称为空间.孟的空间包含四点:(1). 由很多(实际上是无穷多个)位置点组成:(2). 这些点之间存在相对的关系:(3). 可以在空间中定义长度.角度:4.这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的&quo

从拉普拉斯矩阵说到谱聚类

转载:http://blog.csdn.net/v_july_v/article/details/40738211   0 引言     11月1日上午,机器学习班第7次课,邹博讲聚类(PPT),其中的谱聚类引起了自己的兴趣,他从最基本的概念:单位向量.两个向量的正交.方阵的特征值和特征向量,讲到相似度图.拉普拉斯矩阵,最后讲谱聚类的目标函数和其算法流程.     课后自己又琢磨了番谱聚类跟拉普拉斯矩阵,打算写篇博客记录学习心得, 若有不足或建议,欢迎随时不吝指出,thanks. 1 矩阵基础

关于谱聚类的ng算法的实现

广义上讲,任何在学习过程中应用到矩阵特征值分解的方法均叫做谱学习方法,比如主成分分析(PCA),线性判别成分分析(LDA),流形学习中的谱嵌入方法,谱聚类等等. 由于科苑向世明老师课件上面关于ng的谱聚类算法里面与ng大神的论文中写到的算法中有所出入,导致昨天晚上调了一晚上的算法并没有调出满意的结果,今天在网上找到了ng大神的原始paper阅读一遍,虽然还是有很多不理解的地方,还是有了自己的见解.下面是ng算法的流程. 算法第一步先通过高斯函数计算出每个点与其他点的亲和度,与自己的亲和度为0,对

简单易学的机器学习算法——谱聚类(Spectal Clustering)

一.复杂网络中的一些基本概念 1.复杂网络的表示 在复杂网络的表示中,复杂网络可以建模成一个图,其中,表示网络中的节点的集合,表示的是连接的集合.在复杂网络中,复杂网络可以是无向图.有向图.加权图或者超图. 2.网络簇结构 网络簇结构(network cluster structure)也称为网络社团结构(network community structure),是复杂网络中最普遍和最重要的拓扑属性之一.网络簇是整个网络中的稠密连接分支,具有同簇内部节点之间相互连接密集,不同簇的节点之间相互连接

谱聚类算法

转载自:[聚类算法]谱聚类(Spectral Clustering) 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图(sub-Graph),使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的. 对于图的相关定义如下: 对于无向图G = (V,E),V表示顶点集合,即样本集合,即一个顶点为一个样本:E表示边集合. 设样本数为n,即顶点数为n. 权重矩阵:W,为n*n的矩阵,其值wi,j为

用scikit-learn学习谱聚类

在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在scikit-learn的类库中,sklearn.cluster.SpectralClustering实现了基于Ncut的谱聚类,没有实现基于RatioCut的切图聚类.同时,对于相似矩阵的建立,也只是实现了基于K邻近法和全连接法的方式,没有基于$\epsilon$-邻近法的相似矩阵.最后一步的聚类方

谱聚类算法及其代码(Spectral Clustering)

简介 文章将介绍谱聚类(spectral clustering)的基本算法,以及在matlab下的代码实现.介绍内容将包括: 从图分割角度直观理解谱聚类 谱聚类算法步骤 数据以及实现代码 本文将不会涉及细节化的证明和推导,如有兴趣可参考july大神的文章从拉普拉斯矩阵说到谱聚类. 对谱聚类的理解 这一节将从图分割聚类的角度直观理解谱聚类.不过,因为本人是从事社交媒体分析的,将从一种社会关系网络的角度来介绍网络图分割成多个子图的概念. 图的分割 首先将社会关系网络看成是一个整体,每一个个体(use

谱聚类算法(Spectral Clustering)

谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的.其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut). 图1 谱聚类无向图划分——Smallest cut和Best cut 这样,

谱聚类(Spectral Clustering, SC)

谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目 的.其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut). 图1 谱聚类无向图划分——Smallest cut和Best cut 这样