JVM内部细节之一:synchronized关键字及实现细节(轻量级锁Lightweight Locking)

  在C程序代码中我们可以利用操作系统提供的互斥锁来实现同步块的互斥访问及线程的阻塞及唤醒等工作。然而在Java中除了提供Lock API外还在语法层面上提供了synchronized关键字来实现互斥同步原语。那么到底在JVM内部是怎么实现synchronized关键子的呢?

一、synchronized的字节码表示:

在java语言中存在两种内建的synchronized语法:1、synchronized语句;2、synchronized方法。对于synchronized语句当Java源代码被javac编译成bytecode的时候,会在同步块的入口位置和退出位置分别插入monitorenter和monitorexit字节码指令。而synchronized方法则会被翻译成普通的方法调用和返回指令如:invokevirtual、areturn指令,在VM字节码层面并没有任何特别的指令来实现被synchronized修饰的方法,而是在Class文件的方法表中将该方法的access_flags字段中的synchronized标志位置1,表示该方法是同步方法并使用调用该方法的对象或该方法所属的Class在JVM的内部对象表示Klass做为锁对象。

二、JVM中锁的优化:

简单来说在JVM中monitorenter和monitorexit字节码依赖于底层的操作系统的Mutex Lock来实现的,但是由于使用Mutex Lock需要将当前线程挂起并从用户态切换到内核态来执行,这种切换的代价是非常昂贵的;然而在现实中的大部分情况下,同步方法是运行在单线程环境(无锁竞争环境)如果每次都调用Mutex Lock那么将严重的影响程序的性能。不过在jdk1.6中对锁的实现引入了大量的优化,如锁粗化(Lock Coarsening)、锁消除(Lock Elimination)、轻量级锁(Lightweight Locking)、偏向锁(Biased Locking)、适应性自旋(Adaptive Spinning)等技术来减少锁操作的开销。

锁粗化(Lock Coarsening):也就是减少不必要的紧连在一起的unlock,lock操作,将多个连续的锁扩展成一个范围更大的锁。

锁消除(Lock Elimination):通过运行时JIT编译器的逃逸分析来消除一些没有在当前同步块以外被其他线程共享的数据的锁保护,通过逃逸分析也可以在线程本地Stack上进行对象空间的分配(同时还可以减少Heap上的垃圾收集开销)。

轻量级锁(Lightweight Locking):这种锁实现的背后基于这样一种假设,即在真实的情况下我们程序中的大部分同步代码一般都处于无锁竞争状态(即单线程执行环境),在无锁竞争的情况下完全可以避免调用操作系统层面的重量级互斥锁,取而代之的是在monitorenter和monitorexit中只需要依靠一条CAS原子指令就可以完成锁的获取及释放。当存在锁竞争的情况下,执行CAS指令失败的线程将调用操作系统互斥锁进入到阻塞状态,当锁被释放的时候被唤醒(具体处理步骤下面详细讨论)。

偏向锁(Biased Locking):是为了在无锁竞争的情况下避免在锁获取过程中执行不必要的CAS原子指令,因为CAS原子指令虽然相对于重量级锁来说开销比较小但还是存在非常可观的本地延迟(可参考这篇文章)。

适应性自旋(Adaptive Spinning):当线程在获取轻量级锁的过程中执行CAS操作失败时,在进入与monitor相关联的操作系统重量级锁(mutex semaphore)前会进入忙等待(Spinning)然后再次尝试,当尝试一定的次数后如果仍然没有成功则调用与该monitor关联的semaphore(即互斥锁)进入到阻塞状态。

三、对象头(Object Header):

在JVM中创建对象时会在对象前面加上两个字大小的对象头,在32位机器上一个字为32bit,根据不同的状态位Mark World中存放不同的内容,如上图所示在轻量级锁中,Mark Word被分成两部分,刚开始时LockWord为被设置为HashCode、最低三位表示LockWord所处的状态,初始状态为001表示无锁状态。Klass ptr指向Class字节码在虚拟机内部的对象表示的地址。Fields表示连续的对象实例字段。

四、Monitor Record:

   Monitor Record是线程私有的数据结构,每一个线程都有一个可用monitor record列表,同时还有一个全局的可用列表;那么这些monitor record有什么用呢?每一个被锁住的对象都会和一个monitor record关联(对象头中的LockWord指向monitor record的起始地址,由于这个地址是8byte对齐的所以LockWord的最低三位可以用来作为状态位),同时monitor record中有一个Owner字段存放拥有该锁的线程的唯一标识,表示该锁被这个线程占用。如下图所示为Monitor Record的内部结构:

Owner:初始时为NULL表示当前没有任何线程拥有该monitor record,当线程成功拥有该锁后保存线程唯一标识,当锁被释放时又设置为NULL;

EntryQ:关联一个系统互斥锁(semaphore),阻塞所有试图锁住monitor record失败的线程。

RcThis:表示blocked或waiting在该monitor record上的所有线程的个数。

Nest:用来实现重入锁的计数。

HashCode:保存从对象头拷贝过来的HashCode值(可能还包含GC age)。

Candidate:用来避免不必要的阻塞或等待线程唤醒,因为每一次只有一个线程能够成功拥有锁,如果每次前一个释放锁的线程唤醒所有正在阻塞或等待的线程,会引起不必要的上下文切换(从阻塞到就绪然后因为竞争锁失败又被阻塞)从而导致性能严重下降。Candidate只有两种可能的值0表示没有需要唤醒的线程1表示要唤醒一个继任线程来竞争锁。

五、轻量级锁具体实现:

     一个线程能够通过两种方式锁住一个对象:1、通过膨胀一个处于无锁状态(状态位001)的对象获得该对象的锁;2、对象已经处于膨胀状态(状态位00)但LockWord指向的monitor record的Owner字段为NULL,则可以直接通过CAS原子指令尝试将Owner设置为自己的标识来获得锁。

获取锁(monitorenter)的大概过程如下:

(1)当对象处于无锁状态时(RecordWord值为HashCode,状态位为001),线程首先从自己的可用moniter record列表中取得一个空闲的moniter record,初始Nest和Owner值分别被预先设置为1和该线程自己的标识,一旦monitor record准备好然后我们通过CAS原子指令安装该monitor record的起始地址到对象头的LockWord字段来膨胀(原文为inflate,我觉得之所以叫inflate主要是由于当对象被膨胀后扩展了对象的大小;为了空间效率,将monitor record结构从对象头中抽出去,当需要的时候才将该结构attach到对象上,但是和这篇Paper有点互相矛盾,两种实现方式稍微有点不同)该对象,如果存在其他线程竞争锁的情况而调用CAS失败,则只需要简单的回到monitorenter重新开始获取锁的过程即可。

(2)对象已经被膨胀同时Owner中保存的线程标识为获取锁的线程自己,这就是重入(reentrant)锁的情况,只需要简单的将Nest加1即可。不需要任何原子操作,效率非常高。

(3)对象已膨胀但Owner的值为NULL,当一个锁上存在阻塞或等待的线程同时锁的前一个拥有者刚释放锁时会出现这种状态,此时多个线程通过CAS原子指令在多线程竞争状态下试图将Owner设置为自己的标识来获得锁,竞争失败的线程在则会进入到第四种情况(4)的执行路径。

(4)对象处于膨胀状态同时Owner不为NULL(被锁住),在调用操作系统的重量级的互斥锁之前先自旋一定的次数,当达到一定的次数时如果仍然没有成功获得锁,则开始准备进入阻塞状态,首先将rfThis的值原子性的加1,由于在加1的过程中可能会被其他线程破坏Object和monitor record之间的关联,所以在原子性加1后需要再进行一次比较以确保LockWord的值没有被改变,当发现被改变后则要重新进行monitorenter过程。同时再一次观察Owner是否为NULL,如果是则调用CAS参与竞争锁,锁竞争失败则进入到阻塞状态。

释放锁(monitorexit)的大概过程如下:

(1)首先检查该对象是否处于膨胀状态并且该线程是这个锁的拥有者,如果发现不对则抛出异常;

(2)检查Nest字段是否大于1,如果大于1则简单的将Nest减1并继续拥有锁,如果等于1,则进入到(3);

(3)检查rfThis是否大于0,设置Owner为NULL然后唤醒一个正在阻塞或等待的线程再一次试图获取锁,如果等于0则进入到(4)

(4)缩小(deflate)一个对象,通过将对象的LockWord置换回原来的HashCode值来解除和monitor record之间的关联来释放锁,同时将monitor record放回到线程是有的可用monitor record列表。

六、参考资料:

JVM内部细节之一:synchronized关键字及实现细节(轻量级锁Lightweight Locking)

时间: 2024-08-07 14:50:06

JVM内部细节之一:synchronized关键字及实现细节(轻量级锁Lightweight Locking)的相关文章

synchronized关键字的使用及互斥锁的实现

synchronized关键用于多线程环境中实现操作的原子性.互斥性,确保有序的同一时间对同一资源访问.实际上,是锁的一种实现. 用法: class ClassA{ synchronized void methodA(){//修饰非静态方法1 //临界区 } synchronized static void methodB(){//修饰静态方法2 //临界区 } void methodC(){ synchronized(){ //修饰代码块3,相较于修饰方法,影响的范围更小 } } } 修饰非静

JVM内部细节之二:偏向锁(Biased Locking)

在前面一片文章<JVM内部细节之一:synchronized关键字及实现细节>中已经提到过偏向锁的概念,在理解什么是偏向锁前必须先理解什么是轻量级锁(Lightweight Locking).引入偏向锁是为了在无多线程竞争的情况下尽量减少不必要的轻量级锁执行路径,因为轻量级锁的获取及释放依赖多次CAS原子指令,而偏向锁只需要在置换ThreadID的时候依赖一次CAS原子指令(由于一旦出现多线程竞争的情况就必须撤销偏向锁,所以偏向锁的撤销操作的性能损耗必须小于节省下来的CAS原子指令的性能消耗)

多线程 synchronized关键字

在多线程情况下,当多个线程操作同一个资源的时候,会出现安全问题,例如脏读(一个线程咋读取变量的时候,值已经被另一个线程改变). synchronized关键字:可用来同步方法或者代码块.有关synchronized,总结一下几条. 1 synchronized关键字锁的是对象,当多个对象会创建多个锁,而达不到同步的效果. 2 只有操作公共资源的时候才需要上锁,非公共资源没必要上锁. 3 synchronized关键字拥有可重入锁. 4 异常出现的时候,会自动释放锁. 5 同步不具备继承性. 6 

关于Java中的synchronized关键字

[内容简介] 本文主要介绍Java中如何正确的使用synchronized关键字实现线程的互斥锁. [能力需求] 至少已经完整的掌握了Java的语法基础,基本的面向对象知识,及创建并启动线程. [正文] 关于synchronized关键字的使用,很多说法是“锁同一个对象”就可以确保锁是正常的,今天,有人提了一个问题,我觉得非常不错,所以与各位一起分享一下. 在这里,就不提关于线程和synchronized关键字的基本使用了,以非常传统的“银行取钱”的故事为案例,直接上代码:Ps:以下代码是直接敲

volatile关键字和synchronized关键字

volatile关键字: 可以用来修饰字段(成员变量),就是告知程序任何对该变量的访问均需要从共享内存中获取,而对它的改变必须同步刷新回共享内存,它能保证所有线程对变量访问的可见性. synchronized关键字: 可以修饰方法或以同步块的形式来进行使用,它主要确保多个线程在同一时刻,只能有一个线程处于方法或者同步块中,它保证了对变量访问的可见性和排他性. package com.baidu.nuomi.concurrent; /** * Created by sonofelice on 16

java线程总结--synchronized关键字,原理以及相关的锁

在多线程编程中,synchronized关键字非常常见,当我们需要进行"同步"操作时,我们很多时候需要该该关键字对代码块或者方法进行锁定.被synchronized锁定的代码块,只能同时有一条线程访问该代码块. 上面是很多人的认识,当然也是我之前对synchronized关键字的浅显认识,其实上面的观点存在一定的偏差.在参考了很多文章以及自己动手测试过相关代码后,我觉得有必要记录下自己对synchronized关键字的一些理解,在这个过程,会简单说说synchronized关键字的具体

Java并发之synchronized关键字深度解析(二)

前言 本文继续[Java并发之synchronized关键字深度解析(一)]一文而来,着重介绍synchronized几种锁的特性. 一.对象头结构及锁状态标识 synchronized关键字是如何实现的给对象加锁?首先我们要了解一下java中对象的组成.java中的对象由3部分组成,第一部分是对象头,第二部分是实例数据,第三部分是对齐填充. 对齐填充:jvm规定对象的起始内存地址必须是8字节的整数倍,如果不够的话就用占位符来填充,此部分占位符就是对齐填充: 实例数据:实例数据是对象存储的真正有

浅析JVM内部组件

原文地址:http://blog.jamesdbloom.com/JVMInternals.html(转载请注明英文原文出处以及本文地址) 这篇文章简要解析了JVM的内部结构.下面这幅图展示了一个典型的JVM(符合JVM Specification Java SE 7 Edition)所具备的关键内部组件. 上图展示的所有这些组件都将在下面两个章节中被解析.第一章包含将会在每个线程上创建的组件:第二章包含那些不依赖于线程即可创建的组件(线程间可共享的组件). 线程内创建 JVM系统线程 单个线程

Java对象锁和类锁全面解析(多线程synchronized关键字)

最近工作有用到一些多线程的东西,之前吧,有用到synchronized同步块,不过是别人怎么用就跟着用,并没有搞清楚锁的概念.最近也是遇到一些问题,不搞清楚锁的概念,很容易碰壁,甚至有些时候自己连用没用对都不知道. 今天把一些疑惑都解开了,写篇文章分享给大家,文章还算比较全面.当然可能有小宝鸽理解得不够深入透彻的地方,如果说得不正确还望指出. 看之前有必要跟某些猿友说一下,如果看一遍没有看明白呢,也没关系,当是了解一下,等真正使用到了,再回头看. 本文主要是将synchronized关键字用法作