hiho_41周_骨牌覆盖一_招规律+矩阵快速幂

题目

骨牌,一种古老的玩具。今天我们要研究的是骨牌的覆盖问题:

我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?

举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式:

输入

第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000

输出

第1行:1个整数,表示覆盖方案数 MOD 19999997

样例输入
62247088
样例输出
17748018

        前面几组一写,,很容易就能发现规律,是一个线性递推,甚至就是斐波那契。那么下面就是解决巨大斐波那契取模的问题了。

提示:如何快速计算结果

当N很小的时候,我们直接通过递推公式便可以计算。当N很大的时候,只要我们的电脑足够好,我们仍然可以直接通过递推公式来计算。

但是我们学算法的,总是这样直接枚举不是显得很Low么,所以我们要用一个好的算法来加速(装X)。

事实上,对于这种线性递推式,我们可以用矩阵乘法来求第n项。对于本题Fibonacci数列,我们希望找到一个2x2的矩阵M,使得(a, b) x M = (b, a+b),其中(a, b)和(b, a+b)都是1x2的矩阵。

显然,只需要取M = [0, 1; 1, 1]就可以了:

进一步得到:

那么接下来的问题是,能不能快速的计算出M^n?我们先来分析一下幂运算。由于乘法是满足结合律的,所以我们有:

不妨将k[1]..k[j]划分的更好一点?

其中(k[1],k[2]...k[j])2表示将n表示成二进制数后每一位的数字。上面这个公式同时满足这样一个性质:

结合这两者我们可以得到一个算法:

1. 先计算出所有的{a^1, a^2, a^4 ... a^(2^j)},因为该数列满足递推公式,时间复杂度为O(logN)

2. 将指数n二进制化,再利用公式将对应的a^j相乘计算出a^n,时间复杂度仍然为O(logN)

则总的时间复杂度为O(logN)

这种算法因为能够在很短时间内求出幂,我们称之为“快速幂”算法。

 代码:

#include <iostream>
#include<stdio.h>
#include<mem.h>
using namespace std;
const int MAXN=4;
const int MAXM=4;
const int MOD=19999997;
struct Matrix
{
    long long int n,m;
    long long int a[MAXN][MAXM];
    void clear()
    {
        n=m=0;
        memset(a,0,sizeof(a));
    }
    Matrix operator +(const Matrix &b)const
    {
        Matrix tmp;
        tmp.n=n;
        tmp.m=m;
        for(int i=0;i<n;++i)
            for(int j=0;j<m;++j)
        {
            tmp.a[i][j]=(a[i][j]+b.a[i][j])%MOD;
        }
        return tmp;
    }

    Matrix operator -(const Matrix &b)const
    {
            Matrix tmp;
            tmp.n=n;
            tmp.m=m;
            for(int i=0;i<n;++i)
                for(int j=0;j<m;++j)
                tmp.a[i][j]=(a[i][j]-b.a[i][j])%MOD;

            return tmp;
    }

    Matrix operator *(const Matrix &b)const
    {
        Matrix tmp;
        tmp.clear();
        tmp.n=n;
        tmp.m=m;
        for(int i=0;i<n;++i)
        {
            for(int j=0;j<m;++j)
            {
                for(int k=0;k<m;++k)
                {
                    tmp.a[i][j]=(tmp.a[i][j]+(a[i][k]*b.a[k][j])%MOD)%MOD;
                }
            }
        }
        return tmp;
    }
};

int solve(int a[],int b[],int n,int t)
{
    Matrix M,F,E;
    M.clear();
    F.clear();
    E.clear();
    M.n=M.m=n;
    E.n=E.m=n;
    F.n=n;
    F.m=1;
    for(int i=0;i<n-1;++i)
    {
        M.a[i][i+1]=1;
    }
    for(int i=0;i<n;i++)
    {
        M.a[n-1][i]=a[i];
        F.a[i][0]=b[i];
        E.a[i][i]=1;
    }

    if(t<n)
        return F.a[t][0];
    for(t-=n-1;t;t/=2)
    {
        if(t&1)
            E=M*E;
        M=M*M;
    }
    F=E*F;
    return F.a[n-1][0];
}

int main()
{
    int a[]={1,1};
    int b[]={1,2};
    int n=2;
    int t;
    cin>>t;
    cout<<solve(a,b,n,t-1)%MOD<<endl;
    return 0;
}

之所以wa了一炮是因为本地跑的时候用的<mem.h>,网站上的G++不认,要用<memory.h>

时间: 2024-11-06 03:47:06

hiho_41周_骨牌覆盖一_招规律+矩阵快速幂的相关文章

hihoCoder 1143 : 骨牌覆盖问题&#183;一(递推,矩阵快速幂)

[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速计算结果 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 M

hihoCoder #1151 : 骨牌覆盖问题&#183;二 (矩阵快速幂,DP)

题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次,再来乘以初始矩阵init{0,0,0,0,0,0,0,1}后,变成矩阵ans{x,x,x,x,x,x,x,y},y就是答案了,而x不必管. 主要在这个矩阵的构造,假设棋盘是放竖直的(即n*3),那么考虑在第i行进行填放,需要考虑到第i-1行的所有可能的状态(注意i-2行必须是已经填满了,否则第i行无

2015微软编程之美资格赛骨牌覆盖(矩阵快速幂)

由于棋盘只有两行,所以如果第i列的骨牌竖着放,那么就转移为第1列到第i-1列骨牌有多少种摆法 如果第一行第i列骨牌横着放,那么第二行第i列也要横着放,那么就转移为了第1列到第i-2列骨牌有多少种方法 dp[i] = dp[i-1] + dp[i-2],但是列数太多了. 这种递推的算式可以用矩阵快速幂来优化 所以时间复杂度瞬间变为O(logn) 1 #include <stdio.h> 2 #include <string.h> 3 #include <stdlib.h>

题目1 : 骨牌覆盖问题&#183;二 (矩阵快速幂+分析状态的表示+题目的提示分析很好很经典)

题目1 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? 所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢? 首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: [week42_1.PNG] 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,00

题目1 : 骨牌覆盖问题&#183;一 (线性递推+矩阵快速幂)

题目来源 hiho一下 第四十一周 正在进行: 2天05小时28分钟25秒 首页 题目列表 我的提交 排名 讨论 报名人数:1264 题目1 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘.对于这个棋盘,一共有多少种不同的覆盖方法呢? 举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式: 提示:骨牌覆盖 提示:如何快速

hihoCoder #1162 : 骨牌覆盖问题&#183;三 (矩阵快速幂,DP)

题意:有一个k*n的棋盘,要求用1*2的骨牌来铺满,有多少种方案?(k<8,n<100000001) 思路: 由于k是比较小,但是又不那么小,可以专门构造这样的一个矩阵M,使得只要我们有一个初始矩阵R,求得ans矩阵,然后答案就在ans中了.ans=R*Mn. M的大小应该是2k*2k,所以当k稍微大一些就不合适存储这个矩阵了,而且里面大部分都是0,很浪费.由于k<8,所以M的大小为128*128是可以接受的.复杂度是O(23*k*logn),大概是千万级别的. 1 #include &

[HIHO1143]骨牌覆盖问题&#183;一(矩阵快速幂,递推)

题目链接:http://hihocoder.com/problemset/problem/1143 这个递推还是很经典的,结果是斐波那契数列.f(i) = f(i-1) + f(i-2).数据范围太大了,应该用快速幂加速下. 1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8 ┛┗┛┗┛┃ 9 ┓┏┓┏┓┃ 10 ┛┗┛┗┛┃ 11 ┓┏┓┏┓┃ 12 ┛┗┛┗┛┃ 13

nyoj_148_fibonacci数列(二)_矩阵快速幂

fibonacci数列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … An alterna

fibonacci数列(二)_矩阵快速幂

描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … An alternative formula for the Fibonacci sequence is . Given