luogu p3371 单源最短路径(dijkstral

本来我写的对的

我就多手写了个

ios::sync_with_stdio(false);

我程序里面用了cin 还有scanf 本来想偷偷懒

我就说 我查了半天错 根本找不到的啊...

后来交了几次 发现一直有RE 才发现...... 我好笨

//最短路 dijkstral
#include<bits/stdc++.h>
using namespace std;
typedef long long  ll;
const int maxn = 10010;
const ll INF = 2147483647;
typedef pair<ll ,int> pli;
struct node
{
    int to,cost;
    node(int t,int c):to(t),cost(c){}
    bool operator < (const node & a)const {
        return cost > a.cost;
    }
};
vector<node> E[maxn];
ll d[maxn];
priority_queue<pli,vector<pli>,greater<pli> > Q;

int main()
{

    int n,m,st;
    cin>> n>>m>>st;
    for(int i=1;i<=m;i++)
    {
        int x,y,v;
        scanf("%d %d %d",&x, &y ,&v);
        E[x].push_back({y,v});
    }
    for(int i=1;i<=n;i++)
    {
        d[i]=INF;
    }
    d[st] = 0;
    Q.push({0,st});
    while ( Q.size() )
    {
        pli now = Q.top();Q.pop();
        ll cost = now.first;
        int p=now.second;
        if(cost >= INF)
            continue;
        for(int i=0;i<E[p].size();i++)
        {
            int v = E[p][i].to;
            if(d[v] > cost + E[p][i].cost)
            {
                d[v] = cost + E[p][i].cost;//更新最短路;
                Q.push({d[v],v});
            }
        }
    }
    for(int i=1;i<=n;i++)
    {
        if(i!= n)
            cout<<d[i]<<" ";
        else
            cout<<d[i];
    }
    cout<<endl;

}
时间: 2025-01-25 07:41:50

luogu p3371 单源最短路径(dijkstral的相关文章

luogu P3371 &amp; P4779 ---单源最短路径spfa &amp; 最大堆优化Dijkstra

P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i

P3371 【模板】单源最短路径 如题

P3371 [模板]单源最短路径 时空限制1s / 128MB 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为214

Luogu 3371【模板】单源最短路径

Luogu 3371[模板]单源最短路径 第一次写博客用图论题来试一试 接下来是正文部分 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度 (若S=i则最短路径长度为0,若从点S无法到达

P3371 【模板】单源最短路径(弱化版)

P3371 [模板]单源最短路径(弱化版) 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int maxn = 10005; 4 struct edge { 5 int v, w; 6 }; 7 vector<edge> maps[maxn]; 8 int dis[maxn]; 9 bool vis[maxn]; 10 int n, m, s; 11 void add(int u, int v, int w) {

单源最短路径(最短路)

洛谷——P3371 [模板]单源最短路径(spfa) 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为21474836

Dijkstra算法求单源最短路径

1.最短路径 在一个连通图中,从一个顶点到另一个顶点间可能存在多条路径,而每条路径的边数并不一定相同.如果是一个带权图,那么路径长度为路径上各边的权值的总和.两个顶点间路径长度最短的那条路径称为两个顶点间的最短路径,其路径长度称为最短路径长度. 最短路径在实际中有重要的应用价值.如用顶点表示城市,边表示两城市之间的道路,边上的权值表示两城市之间的距离.那么城市A到城市B连通的情况下,哪条路径距离最短呢,这样的问题可以归结为最短路径问题. 求最短路径常见的算法有Dijkstra算法和Floyd算法

单源最短路径 dijkstra算法实现

本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图,并且连通,有向图,不连通图的做法类似. 算法简述: 首先确定"单源"的源,假设是第0个顶点. 维护三个数组dist[], color[], path[],设其下标分别为0-i-n-1: dist[] 表示源点到顶点i的最短距离,在初始化时,如果源点到顶点i有路径,则初始化为路径的权重,否则初始化为INT_MAX: color[] 数组其实表示两个集合,即color[i]值为1的集合表示已经确定最短路径的点的集合,

数据结构之单源最短路径(迪杰斯特拉算法)-(九)

最开始接触最短路径是在数据结构中图的那个章节中.运用到实际中就是我在大三参加的一次美赛中,解决中国的水资源问题.所谓单源最短路径,就是一个起点到图中其他节点的最短路径,这是一个贪心算法. 迪杰斯特拉算法原理(百科): 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶

数据结构:单源最短路径--Dijkstra算法

Dijkstra算法 单源最短路径 给定一带权图,图中每条边的权值是非负的,代表着两顶点之间的距离.指定图中的一顶点为源点,找出源点到其它顶点的最短路径和其长度的问题,即是单源最短路径问题. Dijkstra算法 求解单源最短路径问题的常用方法是Dijkstra(迪杰斯特拉)算法.该算法使用的是贪心策略:每次都找出剩余顶点中与源点距离最近的一个顶点. 算法思想 带权图G=<V,E>,令S为已确定了最短路径顶点的集合,则可用V-S表示剩余未确定最短路径顶点的集合.假设V0是源点,则初始 S={V