The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens‘ placement, where ‘Q‘
and ‘.‘
both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
参考:LeetCode 题解
戴方勤 ([email protected])
https://github.com/soulmachine/leetcode
public class Solution { boolean[] column = null; boolean[] diag = null; boolean[] anti_diag = null; int[]C = null; String model = null; public List<String[]> solveNQueens(int n) { column = new boolean[n]; diag = new boolean[2*n]; anti_diag = new boolean[2*n]; C = new int[n];//Q在第i行的第几列 List<String []> res = new ArrayList<>(); dfs(0,res,n); return res; } private void dfs(int row,List<String[]> res,int n){ if(row==n){ String [] str = new String[n]; for(int i=0;i<n;i++){ StringBuilder sb = new StringBuilder(); for(int j=0;j<n;j++){ if(C[i]==j){ sb.append("Q"); }else{ sb.append("."); } } str[i] = sb.toString(); } res.add(str); return; } for(int j=0;j<n;j++){ if(!column[j]&&!anti_diag[row+j]&&!diag[n-row-1+j]){ C[row]=j; }else{ continue; } column[j]=anti_diag[row+j]=diag[n-row-1+j]=true; dfs(row+1,res,n); column[j]=anti_diag[row+j]=diag[n-row-1+j]=false; } } }
时间: 2024-10-12 18:25:17