Redis源码解析之ziplist

Ziplist是用字符串来实现的双向链表,对于容量较小的键值对,为其创建一个结构复杂的哈希表太浪费内存,所以redis 创建了ziplist来存放这些键值对,这可以减少存放节点指针的空间,因此它被用来作为哈希表初始化时的底层实现。下图即ziplist 的内部结构。

Zlbytes是整个ziplist 所占用的空间,必要时需要重新分配。

Zltail便于快速的访问到表尾节点,不需要遍历整个ziplist。

Zllen表示包含的节点数。

Entries表示用户增加上去的节点。

Zlend是一个255的值,表示ziplist末尾

Ziplist比dict更节省内存,所以在创建hash的时候默认ziplist作为其底层实现,当有需要时,再转换回来。

举例:用户创建一个以ziplist为底层的hash键:

Redis-cli > hset book name "programing"

首先进入hsetCommand()函数的hashTypeLookupWriteOrCreate()函数

void hsetCommand(redisClient *c) {
    int update;
    robj *o;

    if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;
    hashTypeTryConversion(o,c->argv,2,3);
    hashTypeTryObjectEncoding(o,&c->argv[2], &c->argv[3]);
    update = hashTypeSet(o,c->argv[2],c->argv[3]);
    addReply(c, update ? shared.czero : shared.cone);
    signalModifiedKey(c->db,c->argv[1]);
    notifyKeyspaceEvent(REDIS_NOTIFY_HASH,"hset",c->argv[1],c->db->id);
    server.dirty++;
}

robj *hashTypeLookupWriteOrCreate(redisClient *c, robj *key) {
    robj *o = lookupKeyWrite(c->db,key);
    if (o == NULL) {
        o = createHashObject();
        dbAdd(c->db,key,o);
    } else {
        if (o->type != REDIS_HASH) {
            addReply(c,shared.wrongtypeerr);
            return NULL;
        }
    }
    return o;
}

先创建一个空的ziplist,编码方式默认为ziplist ,再add这个Key(book)到DB中

主要的添加操作在hashTpyeSet()中

/* Add an element, discard the old if the key already exists.
 * Return 0 on insert and 1 on update.
 * This function will take care of incrementing the reference count of the
 * retained fields and value objects. */
int hashTypeSet(robj *o, robj *field, robj *value) {
    int update = 0;

    if (o->encoding == REDIS_ENCODING_ZIPLIST) {
        unsigned char *zl, *fptr, *vptr;

        field = getDecodedObject(field);
        value = getDecodedObject(value);

        zl = o->ptr;
        fptr = ziplistIndex(zl, ZIPLIST_HEAD);
        if (fptr != NULL) {
            fptr = ziplistFind(fptr, field->ptr, sdslen(field->ptr), 1);
            if (fptr != NULL) {
                /* Grab pointer to the value (fptr points to the field) */
                vptr = ziplistNext(zl, fptr);
                redisAssert(vptr != NULL);
                update = 1;

                /* Delete value */
                zl = ziplistDelete(zl, &vptr);

                /* Insert new value */
                zl = ziplistInsert(zl, vptr, value->ptr, sdslen(value->ptr));
            }
        }

        if (!update) {
            /* Push new field/value pair onto the tail of the ziplist */
            zl = ziplistPush(zl, field->ptr, sdslen(field->ptr), ZIPLIST_TAIL);
            zl = ziplistPush(zl, value->ptr, sdslen(value->ptr), ZIPLIST_TAIL);
        }
        o->ptr = zl;
        decrRefCount(field);
        decrRefCount(value);

        /* Check if the ziplist needs to be converted to a hash table */
        if (hashTypeLength(o) > server.hash_max_ziplist_entries)
            hashTypeConvert(o, REDIS_ENCODING_HT);
    } else if (o->encoding == REDIS_ENCODING_HT) {
        if (dictReplace(o->ptr, field, value)) { /* Insert */
            incrRefCount(field);
        } else { /* Update */
            update = 1;
        }
        incrRefCount(value);
    } else {
        redisPanic("Unknown hash encoding");
    }
    return update;
}

首先会搜索ziplist ,如果发现有相同的键值,则替换掉,如果找不到,则把新加入的键值push到ziplist 的末尾,在源码中可以发现当其长度大于hash_max_ziplist_entries就需要转换为hash table的编码方式。

完成上述操作之后,就使用addReply()把结果存到buffer中传给客户端。

Redis源码解析之ziplist

时间: 2024-11-13 12:56:14

Redis源码解析之ziplist的相关文章

redis源码解析之事件驱动

Redis 内部有个小型的事件驱动,它主要处理两项任务: 文件事件:使用I/O多路复用技术处理多个客户端请求,并返回执行结果. 时间事件:维护服务器的资源管理,状态检查. 主要的数据结构包括文件事件结构体,时间事件结构体,触发事件结构体,事件循环结构体 /* File event structure */ typedef struct aeFileEvent { int mask; /* one of AE_(READABLE|WRITABLE) */ aeFileProc *rfileProc

Redis源码解析——双向链表

相对于之前介绍的字典和SDS字符串库,Redis的双向链表库则是非常标准的.教科书般简单的库.但是作为Redis源码的一部分,我决定还是要讲一讲的.(转载请指明出于breaksoftware的csdn博客) 基本结构 首先我们看链表元素的结构.因为是双向链表,所以其基本元素应该有一个指向前一个节点的指针和一个指向后一个节点的指针,还有一个记录节点值的空间 typedef struct listNode { struct listNode *prev; struct listNode *next;

redis源码解析之内存管理

zmalloc.h的内容如下: 1 void *zmalloc(size_t size); 2 void *zcalloc(size_t size); 3 void *zrealloc(void *ptr, size_t size); 4 void zfree(void *ptr); 5 char *zstrdup(const char *s); 6 size_t zmalloc_used_memory(void); 7 void zmalloc_enable_thread_safeness(v

redis源码解析之dict数据结构

dict 是redis中最重要的数据结构,存放结构体redisDb中. typedef struct dict { dictType *type; void *privdata; dictht ht[2]; int rehashidx; /* rehashing not in progress if rehashidx == -1 */ int iterators; /* number of iterators currently running */ } dict; 其中type是特定结构的处

Redis源码解析:15Resis主从复制之从节点流程

Redis的主从复制功能,可以实现Redis实例的高可用,避免单个Redis 服务器的单点故障,并且可以实现负载均衡. 一:主从复制过程 Redis的复制功能分为同步(sync)和命令传播(commandpropagate)两个操作: 同步操作用于将从节点的数据库状态更新至主节点当前所处的数据库状态: 命令传播操作则用于在主节点的数据库状态被修改,导致主从节点的数据库状态不一致时,让主从节点的数据库重新回到一致状态: 1:同步 当客户端向从节点发送SLAYEOF命令,或者从节点的配置文件中配置了

Redis源码解析(十五)--- aof-append only file解析

继续学习redis源码下的Data数据相关文件的代码分析,今天我看的是一个叫aof的文件,这个字母是append ONLY file的简称,意味只进行追加文件操作.这里的文件追加记录时为了记录数据操作的改变记录,用以异常情况的数据恢复的.类似于之前我说的redo,undo日志的作用.我们都知道,redis作为一个内存数据库,数据的每次操作改变是先放在内存中,等到内存数据满了,在刷新到磁盘文件中,达到持久化的目的.所以aof的操作模式,也是采用了这样的方式.这里引入了一个block块的概念,其实就

Redis源码解析——字符串map

本文介绍的是Redis中Zipmap的原理和实现.(转载请指明出于breaksoftware的csdn博客) 基础结构 Zipmap是为了实现保存Pair(String,String)数据的结构,该结构包含一个头信息.一系列字符串对(之后把一个"字符串对"称为一个"元素"(ELE))和一个尾标记.用图形表示该结构就是: Redis源码中并没有使用结构体来表达该结构.因为这个结构在内存中是连续的,而除了HEAD和红色背景的尾标记END(恒定是0xFF)是固定的8位,其

Redis源码解析:13Redis中的事件驱动机制

Redis中,处理网络IO时,采用的是事件驱动机制.但它没有使用libevent或者libev这样的库,而是自己实现了一个非常简单明了的事件驱动库ae_event,主要代码仅仅400行左右. 没有选择libevent或libev的原因大概在于,这些库为了迎合通用性造成代码庞大,而且其中的很多功能,比如监控子进程,复杂的定时器等,这些都不是Redis所需要的. Redis中的事件驱动库只关注网络IO,以及定时器.该事件库处理下面两类事件: a:文件事件(file  event):用于处理Redis

Redis源码解析:25集群(一)握手、心跳消息以及下线检测

Redis集群是Redis提供的分布式数据库方案,通过分片来进行数据共享,并提供复制和故障转移功能. 一:初始化 1:数据结构 在源码中,通过server.cluster记录整个集群当前的状态,比如集群中的所有节点:集群目前的状态,比如是上线还是下线:集群当前的纪元等等.该属性是一个clusterState类型的结构体.该结构体的定义如下: typedef struct clusterState { clusterNode *myself; /* This node */ ... int sta