特征值分解和SVD

特征值分解

如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:

这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解成下面的形式:

其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。我这里引用了一些参考文献中的内容来说明一下。首先,要明确的是,一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。比如说下面的一个矩阵:

它其实对应的线性变换是下面的形式:

因为这个矩阵M乘以一个向量(x,y)的结果是:

上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值<1时时缩短),当矩阵不是对称的时候,假如说矩阵是下面的样子:

它所描述的变换是下面的样子:

这其实是在平面上对一个轴进行的拉伸变换(如蓝色的箭头所示),在图中,蓝色的箭头是一个最主要的变化方向(变化方向可能有不止一个),如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了。反过头来看看之前特征值分解的式子,分解得到的Σ矩阵是一个对角阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)

奇异值分解

特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:

假设A是一个N * M的矩阵,那么得到的U是一个N * N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N * M的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),V’(V的转置)是一个N * N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片

那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵A的转置 * A,将会得到一个方阵,我们用这个方阵求特征值可以得到:

这里得到的v,就是我们上面的右奇异向量。此外我们还可以得到:

这里的σ就是上面说的奇异值,u就是上面说的左奇异向量。奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解:

r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:

右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了。

时间: 2024-09-28 22:35:42

特征值分解和SVD的相关文章

特征值分解,奇异值分解(SVD)

特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: 写成矩阵形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量. 2. 特征分解: 特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,正交矩阵是可逆的.Σ?=?diag(λ1,?λ2,

矩阵特征值分解与奇异值分解含义解析及应用

此文有一半转载自他出,主要在这进行个整理,具体内容文中都有相关的转载链接. 特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,那才是线代的核心--别会了点猫腻就忘了本--对,矩阵乘法 就是线性变换,若以其中一个向量A为中心,则B的作用

特征值分解和奇异值分解

特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生

lanczos算法及C++实现(三)实对称三对角阵特征值分解的分治算法

本文属作者原创,转载请注明出处 http://www.cnblogs.com/qxred/p/dcalgorithm.html 本系列目录: lanczos算法及C++实现(一)框架及简单实现 lanczos算法及C++实现(二)实对称阵奇异值分解的QR算法 lanczos算法及C++实现(三)实对称三对角阵特征值分解的分治算法 0. 参考文献 https://en.wikipedia.org/wiki/Divide-and-conquer_eigenvalue_algorithm A. Mel

机器学习基础篇——矩阵特征值分解含义解析及应用

特征值与特征向量的几何意义: 矩阵的乘法是什么,别只告诉我只是"前一个矩阵的行乘以后一个矩阵的列",还会一点的可能还会说"前一个矩阵的列数等于后一个矩阵的行数才能相乘",然而,这里却会和你说--那都是表象. 矩阵乘法真正的含义是变换,我们学<线性代数>一开始就学行变换列变换,矩阵乘法就是线性变换,若以其中一个向量A为中心,则B的作用主要是使A发生如下变化: 伸缩 clf;     %用来清除图形的命令 A = [0, 1, 1, 0, 0;... 1, 

矩阵的“特征值分解”和“奇异值分解”区别

在信号处理中经常碰到观测值的自相关矩阵,从物理意义上说,如果该观测值是由几个(如 K 个)相互统计独立的源信号线性混合而成,则该相关矩阵的秩或称维数就为 K,由这 K 个统计独立信号构成 K 维的线性空间,可由自相关矩阵最大 K 个特征值所对应的特征向量或观测值矩阵最大 K 个奇异值所对应的左奇异向量展成的子空间表示,通常称信号子空间,它的补空间称噪声子空间,两类子空间相互正交.理论上,由于噪声的存在,自相关矩阵是正定的,但实际应用时,由于样本数量有限,可能发生奇异,矩阵条件数无穷大,造成数值不

讲一下numpy的矩阵特征值分解

主要还是调包: from numpy.linalg import eig 特征值分解:  A = P*B*PT  当然也可以写成 A = PT*B*P  其中B为对角元为A的特征值的对角矩阵. 首先A得正定,然后才能在实数域上分解, >>> A = np.random.randint(-10,10,(4,4)) >>> A array([[ 6, 9, -10, -1], [ 5, 9, 5, -5], [ -8, 7, -4, 4], [ -1, -9, 0, 6]]

矩阵的特征值分解

引入问题:给定一个对角线非零的上三角矩阵\(M\),求\(M^k\),满足\(M\)的阶\(\le 500\),\(k\le 10^9\). 对998244353取模. 一个显而易见的算法是矩阵快速幂,然而是\(O(N^3\log k)\)的,无法通过本题. 一开始我想,既然是上三角矩阵,那么特征多项式一定不难求,那么是用CH定理+FFT多项式取模啥搞搞? 然而我naive了. 这题我们可以把\(M\)特征值分解为\(Q^{-1}AQ\)形式,其中\(A\)是一个对角矩阵. 那么\(M^k=(Q

对评分矩阵进行分解,SVD与LSI

摘自推荐系统 一.SVD奇异值分解 参考 https://www.cnblogs.com/lzllovesyl/p/5243370.html 1.SVD简介 SVD(singular value decomposition).其作用就是将一个复杂的矩阵分解成3个小的矩阵. 原文地址:https://www.cnblogs.com/ylxn/p/10686256.html