如何解决秒杀的性能问题和超卖的讨论

如何解决秒杀的性能问题和超卖的讨论

最近业务试水电商,接了一个秒杀的活。之前经常看到淘宝的同行们讨论秒杀,讨论电商,这次终于轮到我们自己理论结合实际一次了。

ps:进入正文前先说一点个人感受,之前看淘宝的ppt感觉都懂了,等到自己出解决方案的时候发现还是有很多想不到的地方其实都没懂,再次验证了“细节是魔鬼”的理论。并且一个人的能力有限,只有大家一起讨论才能想的更周全,更细致。好了,闲话少说,下面进入正文。

一、秒杀带来了什么?



秒杀或抢购活动一般会经过【预约】【抢订单】【支付】这3个大环节,而其中【抢订单】这个环节是最考验业务提供方的抗压能力的。

抢订单环节一般会带来2个问题:

  1、高并发

  比较火热的秒杀在线人数都是10w起的,如此之高的在线人数对于网站架构从前到后都是一种考验。

  2、超卖

  任何商品都会有数量上限,如何避免成功下订单买到商品的人数不超过商品数量的上限,这是每个抢购活动都要面临的难题。

二、如何解决?



首先,产品解决方案我们就不予讨论了。我们只讨论技术解决方案

1、前端

面对高并发的抢购活动,前端常用的三板斧是【扩容】【静态化】【限流】

  A:扩容

  加机器,这是最简单的方法,通过增加前端池的整体承载量来抗峰值。

  B:静态化

  将活动页面上的所有可以静态的元素全部静态化,并尽量减少动态元素。通过CDN来抗峰值。

  C:限流

  一般都会采用IP级别的限流,即针对某一个IP,限制单位时间内发起请求数量。

  或者活动入口的时候增加游戏或者问题环节进行消峰操作。

  D:有损服务

  最后一招,在接近前端池承载能力的水位上限的时候,随机拒绝部分请求来保护活动整体的可用性。

2、后端

那么后端的数据库在高并发和超卖下会遇到什么问题呢?主要会有如下3个问题:(主要讨论写的问题,读的问题通过增加cache可以很容易的解决)

  I: 首先MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。

  II: 其次,超卖的根结在于减库存操作是一个事务操作,需要先select,然后insert,最后update -1。最后这个-1操作是不能出现负数的,但是当多用户在有库存的情况下并发操作,出现负数这是无法避免的。

  III:最后,当减库存和高并发碰到一起的时候,由于操作的库存数目在同一行,就会出现争抢InnoDB行锁的问题,导致出现互相等待甚至死锁,从而大大降低MySQL的处理性能,最终导致前端页面出现超时异常。

针对上述问题,如何解决呢? 我们先看眼淘宝的高大上解决方案:

  I:  关闭死锁检测,提高并发处理性能。

  II:修改源代码,将排队提到进入引擎层前,降低引擎层面的并发度。

  III:组提交,降低server和引擎的交互次数,降低IO消耗。

以上内容可以参考丁奇在DTCC2013上分享的《秒杀场景下MySQL的低效》一文。在文中所有优化都使用后,TPS在高并发下,从原始的150飙升到8.5w,提升近566倍,非常吓人!!!

不过结合我们的实际,改源码这种高大上的解决方案显然有那么一点不切实际。于是小伙伴们需要讨论出一种适合我们实际情况的解决方案。以下就是我们讨论的解决方案:

首先设定一个前提,为了防止超卖现象,所有减库存操作都需要进行一次减后检查,保证减完不能等于负数。(由于MySQL事务的特性,这种方法只能降低超卖的数量,但是不可能完全避免超卖)

update number set x=x-1 where (x -1 ) >= 0;

解决方案1:

将存库从MySQL前移到Redis中,所有的写操作放到内存中,由于Redis中不存在锁故不会出现互相等待,并且由于Redis的写性能和读性能都远高于MySQL,这就解决了高并发下的性能问题。然后通过队列等异步手段,将变化的数据异步写入到DB中。

优点:解决性能问题

缺点:没有解决超卖问题,同时由于异步写入DB,存在某一时刻DB和Redis中数据不一致的风险。

解决方案2:

引入队列,然后将所有写DB操作在单队列中排队,完全串行处理。当达到库存阀值的时候就不在消费队列,并关闭购买功能。这就解决了超卖问题。

优点:解决超卖问题,略微提升性能。

缺点:性能受限于队列处理机处理性能和DB的写入性能中最短的那个,另外多商品同时抢购的时候需要准备多条队列。

解决方案3:

将写操作前移到MC中,同时利用MC的轻量级的锁机制CAS来实现减库存操作。

优点:读写在内存中,操作性能快,引入轻量级锁之后可以保证同一时刻只有一个写入成功,解决减库存问题。

缺点:没有实测,基于CAS的特性不知道高并发下是否会出现大量更新失败?不过加锁之后肯定对并发性能会有影响。

解决方案4:

将提交操作变成两段式,先申请后确认。然后利用Redis的原子自增操作(相比较MySQL的自增来说没有空洞),同时利用Redis的事务特性来发号,保证拿到小于等于库存阀值的号的人都可以成功提交订单。然后数据异步更新到DB中。

优点:解决超卖问题,库存读写都在内存中,故同时解决性能问题。

缺点:由于异步写入DB,可能存在数据不一致。另可能存在少买,也就是如果拿到号的人不真正下订单,可能库存减为0,但是订单数并没有达到库存阀值。

三、总结



1、前端三板斧【扩容】【限流】【静态化】

2、后端两条路【内存】+【排队】

四、非技术感想



1、团队的力量是无穷的,各种各样的解决方案(先不谈可行性)都是在小伙伴们七嘴八舌中讨论出来的。我们需要让所有人都发出自己的声音,不要着急去否定。

2、优化需要从整体层面去思考,不要只纠结于自己负责的部分,如果只盯着一个点思考,最后很可能就走进死胡同中了。

3、有很多东西以为读过了就懂了,其实不然。依然还是需要实践,否则别人的知识永远不可能变成自己的。

4、多思考为什么,会发生什么,不要想当然。只有这样才能深入进去,而不是留在表面。

ps:以上仅仅是我们讨论的一些方案设想,欢迎大家一起讨论各种可行方案。

时间: 2024-10-02 08:28:02

如何解决秒杀的性能问题和超卖的讨论的相关文章

秒杀踩坑记:库存超卖

本案例发生在别人身上,觉得有学习借鉴的意义特转载过来记录一下. PM 说有一个类似于抢购的小需求,我们第一反应就想到是典型的防止库存超卖场景,于是理所因当地选用了 Redis 方案.只要保证是原子操作,即可防止库存超卖,自然想到使用 Incr/Decr 这类原子操作. 查看 PHP 的 Redis 扩展关于 Incr 方法的说明: /** * Increment the number stored at key by one. * * @param string $key * @return i

秒杀与超卖的 性能解决之路

一.秒杀带来了什么? 秒杀或抢购活动一般会经过[预约][抢订单][支付]这3个大环节,而其中[抢订单] 这个环节是最考验业务提供方的抗压能力的. 抢订单环节一般会带来2个问题: 1.高并发 比较火热的秒杀在线人数都是10w起的,如此之高的在线人数对于 网站架构从前到后都是一种考验. 2.超卖 任何商品都会有数量上限,如何避免成功下订单买到商品的人数不 超过商品数量的上限,这是每个抢购活动都要面临的难题. 二.如何解决? 首先,产品解决方案我们就不予讨论了.我们只讨论技术解决方案 1.前端 面对高

秒杀的性能和超卖

一.秒杀带来了什么? 秒杀或抢购活动一般会经过[预约][抢订单][支付]这3个大环节,而其中[抢订单]这个环节是最考验业务提供方的抗压能力的. 抢订单环节一般会带来2个问题: 1.高并发 比较火热的秒杀在线人数都是10w起的,如此之高的在线人数对于网站架构从前到后都是一种考验. 2.超卖 任何商品都会有数量上限,如何避免成功下订单买到商品的人数不超过商品数量的上限,这是每个抢购活动都要面临的难题. 二.如何解决? 首先,产品解决方案我们就不予讨论了.我们只讨论技术解决方案 1.前端 面对高并发的

关于秒杀和超卖的性能问题

一.秒杀带来了什么? 秒杀或抢购活动一般会经过[预约][抢订单][支付]这3个大环节,而其中[抢订单]这个环节是最考验业务提供方的抗压能力的. 抢订单环节一般会带来2个问题: 1.高并发 比较火热的秒杀在线人数都是10w起的,如此之高的在线人数对于网站架构从前到后都是一种考验. 2.超卖 任何商品都会有数量上限,如何避免成功下订单买到商品的人数不超过商品数量的上限,这是每个抢购活动都要面临的难题. 二.如何解决? 首先,产品解决方案我们就不予讨论了.我们只讨论技术解决方案 1.前端 面对高并发的

解决redis秒杀超卖的问题

我们再使用redis做秒杀程序的时候,解决超卖问题,是重中之重.以下是一个思路. 用上述思路去做的话,我们再用户点击秒杀的时候,只需要检测,kucun_count中是否能pop出数据,如果能pop出来则证明还有库存,且秒杀成功.而且pop是原子性的,即使很高的并发, 同时有很多用户访问,也是排队一个一个解决(并行转串行). 这样的话,就解决了超卖的问题.至于存入磁盘,我的上一篇文章中有介绍.有需要的朋友可以去看. 这是一个思路,具体的秒杀程序应该还有很多细节需要完善,但是核心问题已经解决了哈.

[转] 基于MySQL的秒杀核心设计(减库存部分)-防超卖与高并发

商品详情页面的静态化,varnish加速,秒杀商品库独立部署服务器这种就略过不讲了.只讨论库存部分的优化 mysql配置层面的优化可以参考我的这篇文章 <关于mysql innodb引擎性能优化的一点心得> 重点设计在数据库层面. 2张表: 第一张:判重表(buy_record),该用户有没秒杀过该商品 字段: id, uid, goods_id, addtime 第二张表:商品表 goods 字段: goods_id   goods_num 方案1: start transaction; s

大型车祸现场,电商秒杀超卖,这个锅到底有谁来背?

背景 小明在一家在线购物商城工作,最近来了一个新需求,需要他负责开发一个商品秒杀模块,而且需求很紧急,老板要求必须尽快上线. 方案 小明一开始是这么做的,直接用数据库锁进行控制,获取秒杀商品数量并加锁,如果数量大于零则成功,否则秒杀失败. @Override @Transactional public Result startSeckilDBPCC_ONE(long seckillId, long userId) { //获取秒杀商品数量并加锁 String nativeSql = "SELEC

sqlserver2008 死锁解决方法及性能优化方法

sqlserver2008 死锁解决方法及性能优化方法 原文: http://blog.csdn.net/kuui_chiu/article/details/48621939 十步优化SQL Server中的数据访问 http://tech.it168.com/a2009/1125/814/000000814758_2.shtml 关于死锁: [sql] view plain copy sp_who active  --看看哪个引起的死锁, blk里面即阻塞的spid: dbcc inputbu

项目中遇到的超卖问题及解决办法(使用go做测试工具)

超卖问题:在一个很短的时间内,Mysql的数据状态在 取出,比较,提交,或修改中,另外一个进程访问数据导致的超卖问题. 案例: 1.前端没有做限制,如果用户连续点击签到,那么会有多条数据发送到后端,如果数据状态没有来得及完全修改过来,导致用户的签到数据被多次添加. 2.每天签到用户的前3名用户可以获得一张价值100元的优惠券,如果有多名用户在很短的时间内同时签到,那么就会有多发的问题. 解决案例1:使用数据库的行锁和表锁 DROP TABLE IF EXISTS `crm_concurrency