资源 | 源自斯坦福CS229,机器学习备忘录在集结

在 Github 上,afshinea 贡献了一个备忘录对经典的斯坦福 CS229 课程进行了总结,内容包括监督学习、无监督学习,以及进修所用的概率与统计、线性代数与微积分等知识。

项目地址:https://github.com/afshinea/stanford-cs-229-machine-learning

据项目介绍,该 repository 旨在总结斯坦福 CS 229 机器学习课程的所有重要概念,包括:

  • 学习该课程所需的重要预备知识,例如概率与统计、代数与微积分等进修课程。
  • 对每个机器学习领域知识的备忘录,以及在训练模型时需要的提示与技巧。
  • 上面所有的元素最终汇编进来一个备忘录里。

VIP Cheatsheets

在这一部分中,该项目根据 CS 229 提供了监督学习、无监督学习、深度学习、机器学习技巧等重点内容。其中监督学习主要介绍了回归、分类和生成,无监督主要介绍了聚类与降维算法,深度学习概述了三种神经网络。

监督学习

如下所示监督学习介绍了非常多基础概念,包括损失函数、梯度下降和最大似然估计等。其中损失函数展示了常用的最小二乘损失函数、折页损失函数和交叉熵损失函数等,每一种损失函数的图像、定义和应用的算法都展示在其中。

监督学习部分一共有四页备忘录,除了一般的线性与 Logistic 回归,还重点介绍了 SVM、朴素贝叶斯和 K 近邻等其它一些非参模型。这些基本上都是直接给出的定义,因此不会有过多的冗余信息,这对于机器学习开发者与研究者作为参考还是非常有帮助的。

除了标准的定义外,很多重点概念还会用形象的图示表达出来,如下展示了监督学习中的支持向量机:

上述定义清楚地描述了 SVM 的定义,它希望能根据「支持向量」最大化分类边界之间的间隔,这样的分类模型将更稳定。基本上着一幅图就讲述了 SVM 的基本想法,同时也展现了分类原理,根据它再「回忆起」合页损失函数也就更容易了。

无监督学习

无监督学习主要记录了 EM 算法、聚类算法和降维算法等,其中聚类又详细介绍了 K 均值聚类、层级聚类和其他聚类距离度量方法等,而降维算法则主要展示了主成分分析法和独立成分分析法这两种。

除了标准的定义,这些算法的原理图也非常重要,如上所示在 K 均值聚类中,四幅图展示了该算法的具体过程。首先随机初始化均值,然后将离均值近的样本分配为均值所代表的那一类,随后根据误差更新均值的位置,并直到模型收敛。主成分分析同样有非常好的可视化,如下 PCA 会先归一化数据特征,然后根据奇异值分解找出主成分,最后再将所有数据映射到主成分而实现降维。

深度学习

很多读者已经比较了解深度学习了,尤其是全连接网络、卷积网络和循环网络。这一份备忘录同样也展示了这三种网络重要的概念与定义,且同时描述了强化学习的一些基本概念,如马尔可夫决策过程、贝尔曼方程价值迭代算法和 Q 学习等。

我们认为在图 CNN 中,非常重要的是计算输出特征图大小的公式,即 N = (W-F+2P)/S + 1。其中 W 表示输入特征图的长宽,F 表示卷积核大小,P 表示在每一端填补零值的数量,S 表示卷积步幅,因此计算出来的 N 就表示输出特征图的尺寸。这对于设计卷积网络非常重要,我们经常需要该公式控制网络中间的特征图大小。

机器学习技巧

这一份备忘录从分类、回归、模型选择和模型诊断出发展示了 ML 中的一些技巧。其中分类与回归主要从度量方法的角度探讨,也就是说到底什么样的方法才能确定模型的好坏,以及它们的特定属性。同样模型选择与诊断也都希望判断模型的好坏,只不过一个是从交叉验证与正则化的角度考虑,另一个是从偏差与方差的角度考虑。

VIP Refreshers

这一部分作者提供了进修课程的备忘录,包括对概率与统计、代数与微积分的介绍。

概率与统计

从排列与组合开始,这一部分介绍了概率与统计的概念定义。包括条件概率、贝叶斯法则、概率密度函数、概率分布函数与随机变量的均值和方差等。后面的统计也展示了非常多的定义与规则,包括分布的 K 阶矩、常见的离散型与连续型随机变量分布,以及样本均值、方差、协方差等数据特征。

最后,该备忘录同样记录了参数估计,这对于机器学习来说是最为关键的概念之一,因为本质上机器学习就是需要通过大量样本对模型的参数进行估计,或者称为「学习」。此外,之所以高斯分布如此重要,最后面的中心极限定理可以给我们答案。也就是说,如果采样 n 个服从独立同分布的样本,那么当 n 趋近于无穷大的时候,这个未知的分布一定是接近于高斯分布的。

线性代数与微积分

矩阵运算与微分在实际搭建模型时非常重要,因为不论是传统的机器学习还是深度学习,我们实际都是使用矩阵甚至是张量进行运算,了解它们的法则才能理解模型的实际过程。在这一份备忘录中,作者描述了向量与矩阵的定义、各种常见矩阵运算的定义,以及大量的矩阵概念,例如矩阵的迹、矩阵的逆、矩阵的秩、矩阵的正定和特征值与特征向量等。

矩阵微分的基本概念也展示在上面,因为我们在根据反向传播更新参数时,基本使用的都是矩阵微分。这也就需要我们了解 Jacobian 矩阵和 Hessian 矩阵。

原文地址:https://www.cnblogs.com/alan-blog-TsingHua/p/9733955.html

时间: 2024-10-11 04:43:44

资源 | 源自斯坦福CS229,机器学习备忘录在集结的相关文章

斯坦福CS229机器学习课程笔记一:线性回归与梯度下降算法

应该是去年的这个时候,我开始接触机器学习的相关知识,当时的入门书籍是<数据挖掘导论>.囫囵吞枣般看完了各个知名的分类器:决策树.朴素贝叶斯.SVM.神经网络.随机森林等等:另外较为认真地复习了统计学,学习了线性回归,也得以通过orange.spss.R做一些分类预测工作.可是对外说自己是搞机器学习的还是不太自信,毕竟和科班出身的各位大牛相比自己对这些模型.算法的理解只能算是“知其然而不知其所以然”,用起来总感觉哪里不对劲. 因此,去年早早地就把网易公开课上Andrew大神的斯坦福CS229课程

斯坦福CS229机器学习课程笔记七:算法诊断、误差分析以及如何开始一个机器学习问题

这一节是Andrew对应用机器学习给出的建议,虽然没有数学公式,但却是十分重要的一课. Debugging Learning Algorithms 假设要做一个垃圾邮件分类的模型,已经从海量的词汇表中选出一个较小的词汇子集(100个单词)作为特征. 用梯度上升算法实现了贝叶斯逻辑回归,但测试集的错误率达到了20%,这显然太高了. 如何解决这个问题? 收集更多的训练样本 进一步减少特征数 增加特征数 改变特征(考虑邮件标题/正文) 将梯度上升多运行几个迭代 尝试牛顿方法 使用不同的λ 改用SVM

斯坦福CS229机器学习课程笔记六:学习理论、模型选择与正则化

稍微了解有监督机器学习的人都会知道,我们先通过训练集训练出模型,然后在测试集上测试模型效果,最后在未知的数据集上部署算法.然而,我们的目标是希望算法在未知的数据集上有很好的分类效果(即最低的泛化误差),为什么训练误差最小的模型对控制泛化误差也会有效呢?这一节关于学习理论的知识就是让大家知其然也知其所以然. 学习理论 1.empirical risk minimization(经验风险最小化) 假设有m个样本的训练集,并且每个样本都是相互独立地从概率分布D中生成的.对于假设h,定义training

斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在<数学之美>中提到,Google是利用逻辑回归预测搜索广告的点击率.因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么.幸好,在CS229第三节课介绍了逻辑回归,第四节课介绍了广义线性模型,综合起来总算让我对逻辑回归有了一定的理解.与课程的顺序相反,我认为应该先了解广义线性模型再来看逻辑回归,也许这也是为什么讲逻辑回归的网页资料总让人感觉云里雾里的原因

斯坦福CS229机器学习课程笔记五:支持向量机 Support Vector Machines

SVM被许多人认为是有监督学习中最好的算法,去年的这个时候我就在尝试学习.不过,面对长长的公式和拗口的中文翻译最终放弃了.时隔一年,看到Andrew讲解SVM,总算对它有了较为完整的认识,总体思路是这样的:1.介绍间隔的概念并重新定义符号:2.分别介绍functional margins与geometric margins:3.由此引出最大间隔分类器,同时将最优化问题转化为凸函数的优化问题:4.补充了拉格朗日对偶性的知识:5.利用拉格朗日对偶性,推导最大间隔分类器最优化的对偶问题,即SVM的最优

斯坦福CS229机器学习课程笔记三:感知机、Softmax回归

为了给课程的前四讲画上一个句号,这里补充两个前四讲中Andrew大神提到过的模型. The perceptron learning algorithm 感知机 模型:从模型上来看感知机与逻辑回归十分相似,只不过逻辑回归的g函数是逻辑函数(又称sigmoid函数),它是一条从y值0到1的连续曲线.当z→∞,g(z)→1:当z → −∞,g(z)→0.g(z) = 1/(1+e-z)而感知机的g函数是分段函数,只输出0和1.虽然和逻辑回归形式上相近,但是很难为感知机的预测加上概率解释,也很难说感知机

斯坦福CS229机器学习课程笔记四:GDA、朴素贝叶斯、多项事件模型

生成学习与判别学习 像逻辑回归,用hθ(x) = g(θTx) 直接地来建模 p(y|x; θ) :或者像感知机,直接从输入空间映射到输出空间(0或1),它们都被称作判别学习(discriminative learning).与之相对的是生成学习(generative learning),先对 p(x|y) 与 p(y) 建模,然后通过贝叶斯法则导出后验条件概率分布分母的计算规则为全概率公式:p(x) = p(x|y = 1)p(y = 1) + p(x|y =0)p(y = 0).这一节介绍的

斯坦福大学机器学习课程原始讲义(含公开课视频) (转载)

http://blog.csdn.net/v_july_v/article/details/7624837 斯坦福大学机器学习课程原始讲义 本资源为斯坦福大学机器学习课程原始讲义,为Andrew Ng 所讲,共计20个PDF,基本涵盖了机器学习中一些重要的模型.算法.概念,此次一并压缩上传分享给大家,朋友们可以直接点击右边下载:斯坦福大学机器学习课程原始讲义.zip. 斯坦福大学机器学习公开课视频 与之配套的则是斯坦福大学的机器学习公开课的视频: 1. 网易翻译的公开课视频:http://v.1

Coursera公开课笔记: 斯坦福大学机器学习第七课“正则化”

Coursera公开课笔记: 斯坦福大学机器学习第七课"正则化" NLPJob 斯坦福大学机器学习第七课"正则化"学习笔记,本次课程主要包括4部分: 1) The Problem of Overfitting(过拟合问题) 2) Cost Function(成本函数) 3) Regularized Linear Regression(线性回归的正则化) 4) Regularized Logistic Regression(逻辑回归的正则化) 以下是每一部分的详细解读