[POI2002][HAOI2007]反素数 数论 搜索 好题

Code:

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
int prime[]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,51,53};
ll n, maxn;
int cur;
void dfs(int dep,ll m,int t,int p){  //上一个指数
	if(dep==12){
		if(t>=cur){
			if(t>cur) maxn=m, cur=t;
			else if(m<maxn) maxn=m;
		}
		return;
	}
	ll cnt=1;
	for(int i=0;i<=p;++i){
		dfs(dep+1,m*cnt,t*(i+1),i);
		cnt*=prime[dep];
		if(m*cnt>n) break;
	}
}
int main(){
	//freopen("input.in","r",stdin);
	scanf("%lld",&n);
	dfs(1,1,1,30);
	printf("%lld",maxn);
	return 0;
}

  

原文地址:https://www.cnblogs.com/guangheli/p/9891053.html

时间: 2024-10-27 05:41:15

[POI2002][HAOI2007]反素数 数论 搜索 好题的相关文章

题解 P1463 【[POI2002][HAOI2007]反素数】

题目链接 Solution [POI2002][HAOI2007]反素数 题目大意:设\(x\)的约数个数为\(g(x)\),若对于所有\(i \in [1,x)\),都有\(g(i) < g(x)\),则称\(x\)为反素数,求不超过\(n\)的最大反素数 分析:这道题可以打表,但是打表也要讲求方法 对于\(n = 2 \times 10^9\)这种级别的数据,如果你用\(O(n^2)\)算法,估计你得搬出太湖之光才能以可以接受的速度跑完(而且你还得考虑并行计算效率问题) 我们把这个问题分成两

bzoj 1053: [HAOI2007]反素数ant 搜索

1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Status] Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6等都是反质数.现在给定一个数N,你能求出不超过N的最大的反质数么? Input 一个数N

[BZOJ1053] [HAOI2007] 反素数ant (搜索)

Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6等都是反质数. 现在给定一个数N,你能求出不超过N的最大的反质数么? Input 一个数N(1<=N<=2,000,000,000). Output 不超过N的最大的反质数. Sample Input 1000 Sample Output 840 HINT Source Soluti

[POI2002][HAOI2007]反素数

题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6等都是反质数.现在给定一个数N,你能求出不超过N的最大的反质数么? 此题以前学习过,此次刷POI又一次碰到了,我们看到要找到不超过N的最大反质数,我们就可以将问题转化. 在一开始的时候我将问题转化错了,我将问题转化为找到不大于N的中约数最多的数中的的最大的那个.我们考虑它为什么它不对. 令  ∀ x<y&

[POI2002][HAOI2007]反素数(Antiprime)

题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57与27*34*53的约数个数相同)但很明显指数放置位置的不同会影响乘积的大小.由于所有比n小的数的约数个数都比他的约数个数小,换而言之就是约数个数不相等.即 相同约数个数,该数越小越好.那么我们运用贪心思想.尽量大的指数放置于尽量小的底数上. 题目的数据范围小于231,所以指数最大31,由之前的推论

P1463 [POI2002][HAOI2007]反素数

打表出奇迹!!! 这道题暴力当然能做,但是\(n==2 \times 10 ^9\)就不允许暴力了. 让我们打表出奇迹!!! 首先先了解一下如何有效率地算出一个数的约数个数: 最暴力的是从\(1\)枚举到\(n\),每一次++. 优化一点的就是只枚举到\(\sqrt{n}\).但是还是很慢的. 我们了解一下传说的约数个数定理: 对于一个正整数\(n\),由唯一分解定理可以分解为\(p_1^{a_1} \times p_2^{a_2} \times ... \times p_i^{a_i}\).

【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x为反质数.例如,整数1,2,4,6等都是反质数.现在给定一个数N,你能求出不超过N的最大的反质数么 ? Input 一个数N(1<=N<=2,000,000,000). Output 不超过N的最大的反质数. Sample Input 1000 Sample Output

HAOI2007反素数

1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1346  Solved: 732[Submit][Status] Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6等都是反质数. 现在给定一个数N,你能求出不超过N的最大的反质数么? Input 一个

【BZOJ】1053: [HAOI2007]反素数ant

1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不超过2e9的数,要你找出不超过N的最大的反素数: 坑点:里面的反素数是严格小于,所以对于相同的约数要取较小的. 思路:直接深搜外加剪枝即可: #include<iostream> #include<cstdio> #include<cstring> #include<