ELM 极限学习机与SVM支持向量机

在上一篇《DeepLearning 的挑战: Extreme Learning Machine(超限学习机)?》 中介绍了一些ELM与DL 的一些比较,这篇主要介绍ELM的原理。

首先,ELM的核心就是将复杂的迭代过程转变为隐层参数随机产生。

其次,ELM 是一个神经网络,有输入层、隐藏层,输出层。

最后,ELM 的多分类效果优于SVM,而且速度贼快。

对于训练样本集{xi,ti}  i=1-N, 共有N各样本,其中每个样本xi 是一个d维列向量,ti是输出标签。

ELM,的输出为:

其中,wj 为连接第j 各隐节点的输入权值;bj 为第j个隐节点的偏差; j 为第j各隐节点到ELM输出节点的权值;g()为第j各隐节点的输出函数;

而, h(xi)=[g(w1,b1,xi),…..,g(wL,bL,xi)]为隐层关于xi的输出向量,h(xi)的作用是将xi由d维空间映射到L维特征空间。

优化:

其中,   是训练误差,消除过拟合,从而减少测试误差。

C为惩罚因子。

类似于SVM,用对偶问题求解:

公式相对于SVM来说,已经很少了。其中,随机化隐层参数a,b,无需迭代求解。

个人觉得,其模拟人脑系统确实更实际,如果人脑像迭代似的,最优化参数,那速度也贼慢。反而,我们用不同g() 隐层函数,如线性函数,sign函数,甚至cos,sin函数等等,这些学习到的特征更多,而且我们如果将这些函数深层网络格式,这样,是不是又能组合出不一样的函数呢?

所以,我觉得,随机化这些参数是有意义的,而且,效果不错,就能证明他有实用空间。

ps:CSDN 的公式编辑贼麻烦!

时间: 2024-11-22 23:36:50

ELM 极限学习机与SVM支持向量机的相关文章

ELM极限学习机

极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解神经网络算法.ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),ELM比传统的学习算法速度更快. ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输出权重.对于一个单隐层神经网络,假设有个任意的样本,其中,.对于一个有个隐层节点的单隐层神经网络可以表示为 其中,为激活函数,为输入权重,为输出权重,是第个隐层单元的偏置.表示和

极限学习机(Extreme Learning Machine)学习笔记

最近研究上了这个一个东西--极限学习机. 在很多问题中,我大多会碰到两个问题,一个是分类,另一个就是回归.简单来说,分类是给一串数打个标签,回归是把一串数变为一个数. 在这里我们需要处理的数据一般维度都比较高,在处理这两类问题时最简单的方法就是加权.使那些对最终结果影响大的维度的数据的权设大点,影响小的权设小点.其实,影响小的这些维度的数据对于我们整个建立的模型也不是完全没有用的.至少它们保证了我们整个模型的稳定和鲁棒性. 直到现在我都没有说什么是ELM(极限学习机),因为,它本身还存在很大的争

简单易学的机器学习算法——极限学习机(ELM)

极限学习机的概念 ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM可以随机初始化输入权重和偏置并得到相应的输出权重. 对于一个单隐层神经网络,假设有N个任意的样本,其中, .对于一个有个隐层节点的单隐层神经网络可以表示为 其中,为激活函数,为输入权重, 为输出权重,是第个隐层单元的偏置. 单隐层神经网络的学习目标是使得输出的误差最小,可以表示为 即存在,和 ,使得 可以矩阵表述为. 其中,是隐层节点的输出,为输出权重,为期望输出. ,

极限学习机(ELM)的使用

极限学习机的理论 在传统的神经网络训练中,我们通常的做法是要通过梯度下降算法来不断的调整隐层与输出层,输出层与隐层之间的权值矩阵,以及偏置b.但是ELM算法指出,其实隐层的权值矩阵W和偏置b其实是没有必要调整的,在学习算法开始时,任意随机给定W和b的值,利用其计算出H(隐层节点的输出),并令其保持不变,需要确定的参数就只有β了.这是一个比较重要的理论基础. 单隐层前向神经网络(SLFN)结构 设前向神经网络的输入层节点数量为P,特征向量的维数与输入节点数量相同:hidden layer的节点数量

SVM -支持向量机原理详解与实践之三

SVM -支持向量机原理详解与实践之三 什么是核 什么是核,核其实就是一种特殊的函数,更确切的说是核技巧(Kernel trick),清楚的明白这一点很重要. 为什么说是核技巧呢?回顾到我们的对偶问题:     映射到特征空间后约束条件不变,则为:     在原始特征空间中主要是求,也就是和的内积(Inner Product),也称数量积(Scalar Product)或是点积(Dot Product),映射到特征空间后就变成了求,也就是和的映射到特征空间之后的内积,就如我前面所提到的在原始空间

paper 102:极限学习机(Extreme Learning Machine)

原文地址:http://blog.csdn.net/google19890102/article/details/18222103 极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解神经网络算法.ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),ELM比传统的学习算法速度更快. ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM 可以随机初始化输入权重和偏置并得到相应的输 出权重.对于一个单隐层神经网络,假设有个任意

SVM -支持向量机原理详解与实践之四

SVM -支持向量机原理详解与实践之四 SVM原理分析 SMO算法分析 SMO即Sequential minmal optimization, 是最快的二次规划的优化算法,特使对线性SVM和稀疏数据性能更优.在正式介绍SMO算法之前,首先要了解坐标上升法. 坐标上升法(Coordinate ascent) 坐标上升法(Coordinate Ascent)简单点说就是它每次通过更新函数中的一维,通过多次的迭代以达到优化函数的目的. 坐标上升法原理讲解 为了更加通用的表示算法的求解过程,我们将算法表

SVM -支持向量机原理详解与实践之二

SVM -支持向量机原理详解与实践之二 SVM原理分析 以下内容接上篇. 拉格朗日对偶性(Largrange duality)深入分析 前面提到了支持向量机的凸优化问题中拉格朗日对偶性的重要性. 因为通过应用拉格朗日对偶性我们可以寻找到最优超平面的二次最优化, 所以以下可以将寻找最优超平面二次最优化(原问题),总结为以下几个步骤: 在原始权重空间的带约束的优化问题.(注意带约束) 对优化问题建立拉格朗日函数 推导出机器的最优化条件 最后就是在对偶空间解决带拉格朗日乘子的优化问题. 注:以上这个四

SVM 支持向量机

(支持向量机)support vector machine是一种二分类模型,是寻求结构风险最小,实现经验和置信范围最小化. 它的基本模型是定义在特征空间上的间隔最大化的线性分类器,间隔最大化使得它有区别于感知机,并且是唯一的. 学习策略:间隔最大化(解凸二次规划的问题) 线性分类器也叫感知机,就是在N维的数据空间找到一个分类超平面.然后svm其实就是寻找间隔最大化的线性分类器. 首先说他在线性可分的数据集上的: 超平面就是在n维空间上可以将数据线性分类的平面. 超平面: WTX+b=0  W为向