最长上升公共子序列

定义状态

F[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCIS的长度。

状态转移方程:

现在我们来说为什么会是这样的状态转移方程呢?

对于①,因为F[i][j]是以b[j]为结尾的LCIS,如果F[i][j]>0那么就说明a[1]..a[i]中必然有一个整数a[k]等于b[j],因为a[k]!=a[i],那么a[i]对F[i][j]没有贡献,于是我们不考虑它照样能得出F[i][j]的最优值。所以在a[i]!=b[j]的情况下必然有F[i][j]=F[i-1][j]。

对于②,前提是a[i] == b[j],我们需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的F数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。并且也不能是i-2,因为i-1必然比i-2更优。第二维呢?那就需要枚举b[1]...b[j-1]了,因为你不知道这里面哪个最长且哪个小于b[j]。这里还有一个问题,可不可能不配对呢?也就是在a[i]==b[j]的情况下,需不需要考虑F[i][j]=F[i-1][j]的决策呢?答案是不需要。因为如果b[j]不和a[i]配对,那就是和之前的a[1]...a[j-1]配对(假设F[i-1][j]>0,等于0不考虑),这样必然没有和a[i]配对优越。(为什么必然呢?因为b[j]和a[i]配对之后的转移是max(F[i-1][k])+1,而和之前的i`配对则是max(F[i`-1][k])+1。

朴素的LCIS算法实现

Hdu 1423 Greatest Common Increasing Subsequence为例。

预处理:

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;

const int MAXN = 1001;

int a[MAXN], b[MAXN];
int f[MAXN][MAXN];
int n, m;

void init()
{
memset(f, 0, sizeof(f));
}

核心代码:

void dp()
{
init();
int i, j, k;
for(i = 1; i <= n; i++)
{
for(j = 1; j <= m; j++)
{
f[i][j] = f[i-1][j]; // if(a[i] != b[j])
if(a[i] == b[j])
{
int MAX = 0;
for(k = 1; k <= j-1; k++) if(b[j] > b[k]) //枚举最大的f[i-1][k]
{
MAX = max(MAX, f[i-1][k]);
}
f[i][j] = MAX+1;
}
}
}
int ans = 0;
for(int i = 1; i <= m; i++) ans = max(ans, f[n][i]);
printf("%d\n", ans);
}

以上的代码的时间复杂度是O(n^3),那我们怎么去优化呢?通过思考发现,第三层循环找最大值是否可以优化呢?我们能否直接把枚举最大的f[i-1][k]值直接算出来呢?假设存在这么一个序列a[i] == b[j],我们继续看状态转移方程②,会发现b[j] > b[k],即当a[i] == b[j]时,可以推出a[i] > b[k],那么有了这个表达式我们可以做什么呢?可以发现,我们可以维护一个MAX值来储存最大的f[i-1][k]值。即只要有a[i] >b[j]的地方,那么我们就可以更新最大值,所以,当a[i] == b[j]的时候,f[i][j] = MAX+1,即可。

核心代码:

void dp()
{
for(int i = 1; i <= n; i++)
{
int MAX = 0; //维护最大值
for(int j = 1; j <= m; j++)
{
f[i][j] = f[i-1][j]; //a[i] != b[j]
if(a[i] > b[j]) MAX = max(MAX, f[i-1][j]);
if(a[i] == b[j]) f[i][j] = MAX+1;
}
}
int ans = 0;
for(int i = 1; i <= m; i++) ans = max(ans, f[n][i]);
printf("%d\n", ans);
}

可以发现,其实上面的代码有些地方与0/1背包很相似,即每次用到的只是上一层循环用到的值,即f[i-1][j],那么我们可以像优化0/1背包问题利用滚动数组来优化空间。

核心代码:

void dp()
{
init();
for(int i = 1; i <= n; i++)
{
int MAX = 0;
for(int j = 1; j <= n; j++)
{
if(a[i] > b[j]) MAX = max(MAX, f[j]);
if(a[i] == b[j]) f[j] = MAX+1;
}
}
int ans = 0;
for(int j = 1; j <= m; j++) ans = max(ans, f[j]);
printf("%d\n", ans);
}

如果是求最长公共下降子序列呢?很明显嘛,把状态定义改动一下,即f[i][j]表示以a串的前i个整数与b串的前j个整数且以b[j]为结尾构成的LCDS的长度,具体实现的时候只要把a[i] > b[j]改为a[i] < b[j]就可以啦。

时间: 2024-08-04 11:57:03

最长上升公共子序列的相关文章

hdoj1423 最长上升公共子序列

hdoj1423 题目分析: 两个数组a[n1] , b[n2], 求最长上升公共子序列. 我们可用一维存储 f[i] 表示 b 数组以 j 结尾, 与 a[] 数组构成的最长公共上升子序列. 对数组 d 的任意 j 位, 都枚举 a[1 ~n1]. 当a[i] == b[j] 时 , 在1 ~ j - 1中 找出 b[k] 小于 a[ i ] 并且 d[k] 的值最大. 当 a[ i ] > b [j ] 时, 在0到j-1中,对于小于a[i]的,保存f值的最优解 (保存小于a [ i ] 并

最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)

最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj.例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列. 考虑最长公共子序列问题如何分解成

最长递增公共子序列

#include <stdio.h> #include <algorithm> #include <string.h> using namespace std; int n,m,a[505],b[505],dp[505][505]; int LICS() { int MAX,i,j; memset(dp,0,sizeof(dp)); for(i = 1; i<=n; i++) { MAX = 0; for(j = 1; j<=m; j++) { dp[i][

贼有意思[最长上升公共子序列](SAC大佬测试题)

题目描述Awson 最近越来越蠢了,一天就只知道 zyys.他定义了一个 zyys 数列:这个数列满足:1.是另外两个数列 A,B 的公共子序列;2.数列单调递增.现在他有一个问题,我们假设知道两个长度均为 N 的序列 A,B,如何去找最长的 zyys数列呢?由于他只会 zyys 了,他把这个问题交给了你.输入格式第一行包含一个整数 N,表示序列 A,B 的长度;接下来 2 行,每行 N 个数,表示序列 A,B.输出格式一行,输出最长的 zyys 数列.输入样例52 3 3 3 42 3 3 4

poj_1458 LCS problem F.最长上升公共子序列

Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly

HDU 1423 最长上升公共子序列(LCIS)

题目大意: 给定两个数字数组a[] , b[],在这两个数组中找一个最长的公共上升子序列,输出最长的长度 #include <cstdio> #include <cstring> using namespace std; const int N = 1005; #define max(a,b) a>b?a:b int dp[N] , a[N] , b[N]; /*可以看作是每次在第一个数据中提取一个数字,然后在第二个数组中 根据相同的数字来查找最长上升子序列,f[i][j],

CSU-1120 病毒(最长递增公共子序列)

你有一个日志文件,里面记录着各种系统事件的详细信息.自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生). 遗憾的是,你的系统被病毒感染了,日志文件中混入了病毒生成的随机伪事件(但真实事件的相对顺序保持不变).备份的日志文件也被感染了,但由于病毒采用的随机感染方法,主日志文件和备份日志文件在感染后可能会变得不一样. 给出被感染的主日志和备份日志,求真实事件序列的最长可能长度. Input 输入第一行为数据组数T (T<=100).每组数据包含两行,分别描述感染后的主日志

【动态规划】最长上升公共子序列

#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int a[505], b[505]; int dp[505], path[505]; int Susake_lcis[505][505]; void Susake_LCIS(int a[], int la, int b[], int lb) { memset(path, 0, sizeof(path)); m

hdu 1423 最长递增公共子序列

#include<stdio.h> #include<string.h> #include<iostream> using namespace std; int max(int a,int b) { return a>b?a:b; } int main() { int T,i,j,n,m,num1[510],num2[510]; int dp[510][510]; scanf("%d",&T); while(T--) { scanf(&