POJ 2553 The Bottom of a Graph 【scc tarjan】

图论之强连通复习开始- -

题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点

思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不在点集内,因为缩点后是DAG,无环,因此一定不能回到原来的点,所以找到出度为0的点即可

#include<cstdio>

#include<string.h>

#include<math.h>

#include<algorithm>

#include<iostream>

#include<queue>

#define maxn 90000

#define inf 0x3f3f3f3f

using namespace std;

int head[maxn],next[maxn],point[maxn],now=0;

int dfn[maxn],low[maxn],time,col,stack[maxn];

int top,belong[maxn],out[maxn];

bool instack[maxn];

void add(int x,int y)

{

next[++now]=head[x];

head[x]=now;

point[now]=y;

}

void tarjan(int k)

{

int u;

dfn[k]=low[k]=++time;

instack[k]=1;

stack[++top]=k;

for(int i=head[k];i;i=next[i])

{

u=point[i];

if(dfn[u]==0)

{

tarjan(u);

low[k]=min(low[u],low[k]);

}

else if(instack[u])low[k]=min(low[k],low[u]);

}

if(low[k]==dfn[k])

{

++col;

do

{

u=stack[top--];

instack[u]=0;

belong[u]=col;

}while(u!=k);

}

}

int main()

{

int n,m,x,y;

while(1)

{

scanf("%d",&n);

if(n==0)break;

scanf("%d",&m);

now=0;memset(head,0,sizeof(head));

top=0;memset(instack,0,sizeof(instack));

memset(out,0,sizeof(out));

memset(dfn,0,sizeof(dfn));

for(int i=1;i<=m;i++)

{

scanf("%d%d",&x,&y);

add(x,y);

}

for(int i=1;i<=n;i++)if(dfn[i]==0)tarjan(i);

for(int i=1;i<=n;i++)

{

for(int j=head[i];j;j=next[j])

{

int u=point[j];

if(belong[i]!=belong[u])out[belong[i]]++;

}

}

int flag=1;

for(int i=1;i<=n;i++)

{

if(flag && out[belong[i]]==0)

{

printf("%d",i);

flag^=flag;

}

else if(out[belong[i]]==0)printf(" %d",i);

}

printf("\n");

}

return 0;

}

时间: 2024-10-17 04:02:15

POJ 2553 The Bottom of a Graph 【scc tarjan】的相关文章

poj 2553 The Bottom of a Graph 【强连通图中出度为0点】

题目:poj 2553 The Bottom of a Graph 题意:大概题意是给出一个有向图,求强连通缩点以后出度为0的点. 分析:入门题目,先强连通缩点,然后表示出度为0的,枚举输出即可. #include <cstdio> #include <vector> #include <iostream> #include <stack> #include <cstring> using namespace std; const int N =

poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted: 4008 Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called ver

POJ 2553 The Bottom of a Graph(Tarjan,强连通分量)

解题思路: 本题要求 求出所有满足"自己可达的顶点都能到达自己"的顶点个数,并从小到大输出. 利用Tarjan算法求出强连通分量,统计每个强连通分量的出度,出度为0的强连通分量内的顶点即为所求顶点. #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <cmath

POJ 2553 The Bottom of a Graph TarJan算法题解

本题分两步: 1 使用Tarjan算法求所有最大子强连通图,并且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的所有点,都是解集. Tarjan算法就是模板算法了. 这里使用一个数组和一个标识号,就可以记录这个顶点是属于哪个子强连通图的了. 然后使用DFS递归搜索所有点及其边,如果有边的另一个顶点不属于本子强连通图,那么就说明有出射的边. 有难度的题目: #include <stdio.h> #include <stdlib.h> #include &l

POJ 2553 The Bottom of a Graph(强连通分量)

POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <stack> using namespace std; const int N = 5005; int n, m; vector&l

[tarjan] poj 2553 The Bottom of a Graph

题目链接: http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8899   Accepted: 3686 Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and fini

POJ 2553 The Bottom of a Graph

The Bottom of a Graph Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 255364-bit integer IO format: %lld      Java class name: Main We will use the following (standard) definitions from graph theory. Let V be

POJ 2553 The Bottom of a Graph (强连通分量)

题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假设这个分量还连接其它分量的话,则肯定都不是sink.所以仅仅须要找出度为0的强连通分量就可以. 代码例如以下: #include <iostream> #include <string.h> #include <math.h> #include <queue>

POJ 2553--The Bottom of a Graph【scc缩点构图 &amp;&amp; 求出度为0的scc &amp;&amp; 输出scc中的点】

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9575   Accepted: 3984 Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called ver