Java垃圾收集机制

通常,我们把分配出去后,却无法回收的内存空间称为"内存渗漏体(Memory Leaks)"。

  以上这种程序设计的潜在危险 性在Java这样以严谨、安全著称的语言中是不允许的。但是Java语言既不能限制程序员编写程序的自由性,又不能把声明对象的部分去除(否则就不是面向 对象的程序语言了),那么最好的解决办法就是从Java程序语言本身的特性入手。于是,Java技术提供了一个系统级的线程(Thread),即垃圾收集 器线程(Garbage Collection Thread),来跟踪每一块分配出去的内存空间,当Java 虚拟机(Java Virtual Machine)处于空闲循环时,垃圾收集器线程会自动检查每一快分配出去的内存空间,然后自动回收每一快可以回收的无用的内存块。

  垃圾收集器线程是一种低优先级的线程,在一个Java程序的生命周期中,它只有在内存空闲的时候才有机会运行。它有效地防止了内存渗漏体的出现,并极大可能地节省了宝贵的内存资源。但是,通过Java虚拟机来执行垃圾收集器的方案可以是多种多样的。

  下面介绍垃圾收集器的特点和它的执行机制:

  垃圾收集器系统有自己的一套方案来判断哪个内存块是应该被回收的,哪个是不符合要求暂不回收的。垃圾收集器在一个Java程序中的执行是自动的,不能强 制执行,即使程序员能明确地判断出有一块内存已经无用了,是应该回收的,程序员也不能强制垃圾收集器回收该内存块。程序员唯一能做的就是通过调用 System. gc 方法来"建议"执行垃圾收集器,但其是否可以执行,什么时候执行却都是不可知的。这也是垃圾收集器的最主要的缺点。当然相对于它给程序员带来的巨大方便性 而言,这个缺点是瑕不掩瑜的。 垃圾收集器的主要特点

  1.垃圾收集器的工作目标是回收已经无用的对象的内存空间,从而避免内存渗漏体的产生,节省内存资源,避免程序代码的崩溃。

  2.垃圾收集器判断一个对象的内存空间是否无用的标准是:如果该对象不能再被程序中任何一个"活动的部分"所引用,此时我们就说,该对象的内存空间已经无用。所谓"活动的部分",是指程序中某部分参与程序的调用,正在执行过程中,尚未执行完毕。

  3.垃圾收集器线程虽然是作为低优先级的线程运行,但在系统可用内存量过低的时候,它可能会突发地执行来挽救内存资源。当然其执行与否也是不可预知的。

  4.垃圾收集器不可以被强制执行,但程序员可以通过调用System. gc方法来建议执行垃圾收集器。

  5.不能保证一个无用的对象一定会被垃圾收集器收集,也不能保证垃圾收集器在一段Java语言代码中一定会执行。因此在程序执行过程中被分配出去的内存 空间可能会一直保留到该程序执行完毕,除非该空间被重新分配或被其他方法回收。由此可见,完全彻底地根绝内存渗漏体的产生也是不可能的。但是请不要忘 记,Java的垃圾收集器毕竟使程序员从手工回收内存空间的繁重工作中解脱了出来。设想一个程序员要用C或C++来编写一段10万行语句的代码,那么他一 定会充分体会到Java的垃圾收集器的优点!

  6.同样没有办法预知在一组均符合垃圾收集器收集标准的对象中,哪一个会被首先收集。

  7.循环引用对象不会影响其被垃圾收集器收集。

  8.可以通过将对象的引用变量(reference variables,即句柄handles)初始化为null值,来暗示垃圾收集器来收集该对象。但此时,如果该对象连接有事件监听器(典型的 AWT组件),那它还是不可以被收集。所以在设一个引用变量为null值之前,应注意该引用变量指向的对象是否被监听,若有,要首先除去监听器,然后才可 以赋空值。

  9.每一个对象都有一个finalize( )方法,这个方法是从Object类继承来的。

  10.finalize( )方法用来回收内存以外的系统资源,就像是文件处理器和网络连接器。该方法的调用顺序和用来调用该方法的对象的创建顺序是无关的。换句话说,书写程序时该 方法的顺序和方法的实际调用顺序是不相干的。请注意这只是finalize( )方法的特点。

  11.每个对象只能调用finalize( )方法一次。如果在finalize( )方法执行时产生异常(exception),则该对象仍可以被垃圾收集器收集。

  12.垃圾收集器跟踪每一个对象,收集那些不可到达的对象(即该对象没有被程序的任何"活的部分"所调用),回收其占有的内存空间。但在进行垃圾收集的 时候,垃圾收集器会调用finalize( )方法,通过让其他对象知道它的存在,而使不可到达的对象再次"复苏"为可到达的对象。既然每个对象只能调用一次finalize( )方法,所以每个对象也只可能"复苏"一次。

  13.finalize( )方法可以明确地被调用,但它却不能进行垃圾收集。

  14.finalize( )方法可以被重载(overload),但只有具备初始的finalize( )方法特点的方法才可以被垃圾收集器调用。

  15.子类的finalize( )方法可以明确地调用父类的finalize( )方法,作为该子类对象的最后一次适当的操作。但Java编译器却不认为这是一次覆盖操作(overriding),所以也不会对其调用进行检查。

  16.当finalize( )方法尚未被调用时,System. runFinalization( )方法可以用来调用finalize( )方法,并实现相同的效果,对无用对象进行垃圾收集。

  17.当一个方法执行完毕,其中的局部变量就会超出使用范围,此时可以被当作垃圾收集,但以后每当该方法再次被调用时,其中的局部变量便会被重新创建。

  18.Java语言使用了一种"标记交换区的垃圾收集算法"。该算法会遍历程序中每一个对象的句柄,为被引用的对象做标记,然后回收尚未做标记的对象。所谓遍历可以简单地理解为"检查每一个"。

  19.Java语言允许程序员为任何方法添加finalize( )方法,该方法会在垃圾收集器交换回收对象之前被调用。但不要过分依赖该方法对系统资源进行回收和再利用,因为该方法调用后的执行结果是不可预知的。

  通过以上对垃圾收集器特点的了解,你应该可以明确垃圾收集器的作用,和垃圾收集器判断一块内存空间是否无用的标准。简单地说,当你为一个对象赋值为null并且重新定向了该对象的引用者,此时该对象就符合垃圾收集器的收集标准。

  判断一个对象是否符合垃圾收集器的收集标准,这是SUN公司程序员认证考试中垃圾收集器部分的重要考点(可以说,这是唯一的考点)。所以,考生在一段给 定的代码中,应该能够判断出哪个对象符合垃圾收集器收集的标准,哪个不符合。下面结合几种认证考试中可能出现的题型来具体讲解:

  Object obj = new Object ( ) ;

  我们知道,obj为Object的一个句柄。当出现new关键字时,就给新建的对象分配内存空间,而obj的值就是新分配的内存空间的首地址,即该对象 的值(请特别注意,对象的值和对象的内容是不同含义的两个概念:对象的值就是指其内存块的首地址,即对象的句柄;而对象的内容则是其具体的内存块)。此时 如果有 obj = null; 则obj指向的内存块此时就无用了,因为下面再没有调用该变量了。

技术分享:www.kaige123.com

时间: 2024-10-26 06:17:19

Java垃圾收集机制的相关文章

【深入Java虚拟机】之二:Java垃圾收集机制

[深入Java虚拟机]之:Java垃圾收集机制 对象引用 Java中的垃圾回收一般是在Java堆中进行,因为堆中几乎存放了Java中所有的对象实例.谈到Java堆中的垃圾回收,自然要谈到引用.在JDK1.2之前,Java中的引用定义很很纯粹:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用.但在JDK1.2之后,Java对引用的概念进行了扩充,将其分为强引用(Strong Reference).软引用(Soft Reference).弱引用(

JAVA垃圾收集机制剖析

1.垃圾收集算法的核心思想 Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象.该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用. 垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别,如果对象正在被引用,那么称其为存活对象,反之,如果对象不再被引用,则为垃圾对象,可以回收其占据的空间,用于再分配.垃圾收集算法的选择和垃圾收集系统参数的合理调节直接影响着系统性能,

【深入Java虚拟机】之八:Java垃圾收集机制

转载请注明出处:http://blog.csdn.net/ns_code/article/details/18076173 对象引用 Java中的垃圾回收一般是在Java堆中进行,因为堆中几乎存放了Java中所有的对象实例.谈到Java堆中的垃圾回收,自然要谈到引用.在JDK1.2之前,Java中的引用定义很很纯粹:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用.但在JDK1.2之后,Java对引用的概念进行了扩充,将其分为强引用(Stro

Java 垃圾收集机制

对象引用 Java 中的垃圾回收一般是在 Java 堆中进行,因为堆中几乎存放了 Java 中所有的对象实例.谈到 Java 堆中的垃圾回收,自然要谈到引用.在 JDK1.2 之前,Java 中的引用定义很很纯粹:如果 reference 类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用.但在 JDK1.2 之后,Java 对引用的概念进行了扩充,将其分为强引用(Strong Reference).软引用(Soft Reference).弱引用(Weak Refe

JAVA垃圾收集机制与内存分配

引言 垃圾收集技术并不是Java语言首创的,1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言.垃圾收集技术需要考虑的三个问题是: 哪些内存需要回收? 什么时候回收? 如何回收? http://segmentfault.com/a/1190000002931555 中讲到java内存运行时区域的分布,其中程序计数器,虚拟机栈,本地方法区都是随着线程而生,随线程而灭,所以这几个区域就不需要过多考虑回收问题.但是堆和方法区就不一样了,只有在程序运行期间我们才知道会创建哪

Java虚拟机(五)——垃圾收集机制

垃圾回收介绍 ?? Java虚拟机内存划分讲到了Java 内存运行时区域的各个部分,其中程序计数器,虚拟机栈,本地方法栈三个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出有条不紊地执行着出栈和入栈操作.每一个栈帧中分配多少内存基本上是在类结构确定下来是就已知了.因此这几个区域的内存分配和回收都具有确定性,在这几个区域就需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了.而Java 堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个

第一节 垃圾收集机制简介以及简单配置

垃圾收集机制(GC)是JVM用于释放那些不再使用的对象所占用内存的程序和算法.GC并没有写入在java语言定制的标准中,因此并不是所有的JVM都有GC.GC的主要目的就是清除不再使用的对象. 垃圾回收的两种方法: 1.引用计数 引用计数表示一个对象被引用的所有次数,当引用计数为0时,则表示该对象没有被引用,可以将其删除. 2.对象引用树 目前比较常用的垃圾收集机制是对象引用树,即将对像的引用关系构建成一棵树,从一组根对象开始,对所有对象进行查找,通过递归查找若在该树中找到相应的对象,则将该对象标

【转】Java垃圾收集器

原文链接 http://www.cnblogs.com/gw811/archive/2012/10/19/2730258.html#top Java垃圾收集器 概述 说起垃圾收集(Garbage Collection,GC),大部分人都把这项技术当做Java语言的伴生产物.事实上,GC的历史远远比Java久远,1960年诞生于MIT的Lisp是第一门真正使用内存动态分配和垃圾收集技术的语言.当Lisp还在胚胎时期时,人们就在思考: GC需要完成的三件事情: 哪些内存需要回收? 什么时候回收? 如

Java GC机制

Java中GC机制(garbage collection)是垃圾回收机制,更确切的说是内存回收机制 在一个对象不再被程序引用时,它所占用的堆空间就可以回收,以便分配给新对象使用.而且除了释放不再被引用的对象外,垃 圾收集器还要处理堆碎块(堆碎块是在正常的程序运行时产生的),因为新的对象分配了空间,不再被引用的对象被释放,所以堆内存的空闲位置介于活对的对象之间,而请求分配新对象时可能不得不增大堆空间,因为虽然总的空闲空间是够的,但堆中没有连续的空闲空间放得下新对象. 上面是垃圾收集的作用,其好处在