【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比

梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。

下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。

1、批量梯度下降的求解思路如下:

(1)将J(theta)对theta求偏导,得到每个theta对应的的梯度

(2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta

(3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数据,如果m很大,那么可想而知这种方法的迭代速度!!所以,这就引入了另外一种方法,随机梯度下降。

2、随机梯度下降的求解思路如下:

(1)上面的风险函数可以写成如下这种形式,损失函数对应的是训练集中每个样本的粒度,而上面批量梯度下降对应的是所有的训练样本:

(2)每个样本的损失函数,对theta求偏导得到对应梯度,来更新theta

(3)随机梯度下降是通过每个样本来迭代更新一次,如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将theta迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次。但是,SGD伴随的一个问题是噪音较BGD要多,使得SGD并不是每次迭代都向着整体最优化方向。

3、对于上面的linear regression问题,与批量梯度下降对比,随机梯度下降求解的会是最优解吗?

(1)批量梯度下降---最小化所有训练样本的损失函数,使得最终求解的是全局的最优解,即求解的参数是使得风险函数最小。

(2)随机梯度下降---最小化每条样本的损失函数,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近。

4、梯度下降用来求最优解,哪些问题可以求得全局最优?哪些问题可能局部最优解?

对于上面的linear regression问题,最优化问题对theta的分布是unimodal,即从图形上面看只有一个peak,所以梯度下降最终求得的是全局最优解。然而对于multimodal的问题,因为存在多个peak值,很有可能梯度下降的最终结果是局部最优。

5、随机梯度和批量梯度的实现差别

以前一篇博文中NMF实现为例,列出两者的实现差别(注:其实对应python的代码要直观的多,以后要练习多写python!)

[java] view plaincopy

    1. // 随机梯度下降,更新参数
    2. public void updatePQ_stochastic(double alpha, double beta) {
    3. for (int i = 0; i < M; i++) {
    4. ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();
    5. for (Feature Rij : Ri) {
    6. // eij=Rij.weight-PQ for updating P and Q
    7. double PQ = 0;
    8. for (int k = 0; k < K; k++) {
    9. PQ += P[i][k] * Q[k][Rij.dim];
    10. }
    11. double eij = Rij.weight - PQ;
    12. // update Pik and Qkj
    13. for (int k = 0; k < K; k++) {
    14. double oldPik = P[i][k];
    15. P[i][k] += alpha
    16. * (2 * eij * Q[k][Rij.dim] - beta * P[i][k]);
    17. Q[k][Rij.dim] += alpha
    18. * (2 * eij * oldPik - beta * Q[k][Rij.dim]);
    19. }
    20. }
    21. }
    22. }
    23. // 批量梯度下降,更新参数
    24. public void updatePQ_batch(double alpha, double beta) {
    25. for (int i = 0; i < M; i++) {
    26. ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();
    27. for (Feature Rij : Ri) {
    28. // Rij.error=Rij.weight-PQ for updating P and Q
    29. double PQ = 0;
    30. for (int k = 0; k < K; k++) {
    31. PQ += P[i][k] * Q[k][Rij.dim];
    32. }
    33. Rij.error = Rij.weight - PQ;
    34. }
    35. }
    36. for (int i = 0; i < M; i++) {
    37. ArrayList<Feature> Ri = this.dataset.getDataAt(i).getAllFeature();
    38. for (Feature Rij : Ri) {
    39. for (int k = 0; k < K; k++) {
    40. // 对参数更新的累积项
    41. double eq_sum = 0;
    42. double ep_sum = 0;
    43. for (int ki = 0; ki < M; ki++) {// 固定k和j之后,对所有i项加和
    44. ArrayList<Feature> tmp = this.dataset.getDataAt(i).getAllFeature();
    45. for (Feature Rj : tmp) {
    46. if (Rj.dim == Rij.dim)
    47. ep_sum += P[ki][k] * Rj.error;
    48. }
    49. }
    50. for (Feature Rj : Ri) {// 固定k和i之后,对多有j项加和
    51. eq_sum += Rj.error * Q[k][Rj.dim];
    52. }
    53. // 对参数更新
    54. P[i][k] += alpha * (2 * eq_sum - beta * P[i][k]);
    55. Q[k][Rij.dim] += alpha * (2 * ep_sum - beta * Q[k][Rij.dim]);
    56. }
    57. }
    58. }
    59. }

http://blog.csdn.net/lilyth_lilyth/article/details/8973972

时间: 2024-10-26 12:47:26

【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比的相关文章

梯度下降法、随机梯度下降法、小批量梯度下降法

本文以二维线性拟合为例,介绍批量梯度下降法.随机梯度下降法.小批量梯度下降法三种方法,求解拟合的线性模型参数. 需要拟合的数据集是 $(X_1, y_1), (X_2, y_2)..., (X_n, y_n)$,其中$X^i=(x_1^i, x_2^i)$,表示2个特征,$y^j$是对应的回归值. 拟合得到的函数是 $h_{\theta_1, \theta_2}(X)$,尽可能使${h_{{\theta _1},{\theta _2}}}(X) \approx y$. 损失函数是$J(\thet

随机梯度下降(stochastic gradient descent),批梯度下降(batch gradient descent),正规方程组(The normal equations)

对于一个线性回归问题有 为了使得预测值h更加接近实际值y,定义 J越小,预测更加可信,可以通过对梯度的迭代来逼近极值 批梯度下降(batch gradient descent)(the entire training set before taking a single step) 随机梯度下降(stochastic gradient descent)(gets θ "close" to the minimum much faster than batch gradient desce

随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比

转自:here 注意下面说的全局最优是特殊的情况,一般还是梯度下降的方法还是很容易变成局部最优. 梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式的角度对两者进行分析. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对the

随机梯度下降 Stochastic gradient descent

梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可. 在梯度下降法中,目标函数其实可以看做是参数的函数,因为给出了样本输入和输出值后,目标函数就只剩下参数部分了,这时可以把参数看做是自变量,则目标函数变成参数的函数了. 梯度下降每次都是更新每个参数,且每个参数更新的形式是一样的,即用前一次该参数的值减掉学习率和目标函数对该参数的偏导数(如果只有1个参数的话,就是导数) 为什么要这样做呢? 通过取不同点处的参数可以看出,这样做恰好可以使原来的目

批量梯度下降BGD、随机梯度下降SGD和小批量梯度下降MBGD对比

一般线性回归函数的假设函数为: 对应的损失函数为: (这里的1/2是为了后面求导计算方便)下图作为一个二维参数(,)组对应能量函数的可视化图: 下面我们来比较三种梯度下降法 批量梯度下降法BGD (Batch Gradient Descent) 我们的目的是要误差函数尽可能的小,即求解weights使误差函数尽可能小.首先,我们随机初始化weigths,然后不断反复的更新weights使得误差函数减小,直到满足要求时停止.这里更新算法我们选择梯度下降算法,利用初始化的weights并且反复更新w

批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.  为了便于理解,这里我们将使

NN优化方法对比:梯度下降、随机梯度下降和批量梯度下降

1.前言 这几种方法呢都是在求最优解中经常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中,都是围绕以下这个式子展开: 其中在上面的式子中hθ(x)代表,输入为x的时候的其当时θ参数下的输出值,与y相减则是一个相对误差,之后再平方乘以1/2,并且其中 注意到x可以一维变量,也可以是多维变量,实际上最常用的还是多维变量.我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候,应该是沿着梯度的反方向进行权重的更新,可以有效的找到全局的最优解.这个θ的更新过程可以描

flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最能反映这些样本数据之间的规律呢? 为了解决这个问题,我们需要引入误差分析预测值与真实值之间的误差为最小. 2.梯度下降算法 梯度下降的场景: 梯度下降法的基本思想可以类比为一个下山的过程.假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷). 但此时山上的浓雾很

批量梯度下降与随机梯度下降

下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降(BGD)的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是要最小化风险函数,所以按每个参数theta的梯度负方向,来更新每个theta (3)从上面公式可以注意到,它得到的是一个全局最优解,但是每迭代一步,都要用到训练集所有的数