There is a funny car racing in a city with n junctions and m directed roads.
The funny part is: each road is open and closed periodically. Each road is associate with two integers (a, b), that means the road will be open for a seconds, then closed for b seconds, then open for a seconds. . . All these start from the beginning of the race. You must enter a road when it’s open, and leave it before it’s closed again.
Your goal is to drive from junction s and arrive at junction t as early as possible. Note that you can wait at a junction even if all its adjacent roads are closed.
Input
There will be at most 30 test cases. The first line of each case contains four integers n, m, s, t (1 ≤ n ≤ 300, 1 ≤ m ≤ 50, 000, 1 ≤ s, t ≤ n). Each of the next m lines contains five integers u, v, a, b, t (1 ≤ u, v ≤ n, 1 ≤ a, b, t ≤ 105 ), that means there is a road starting from junction u ending with junction v. It’s open for a seconds, then closed for b seconds (and so on). The time needed to pass this road, by your car, is t. No road connects the same junction, but a pair of junctions could be connected by more than one road.
Output
For each test case, print the shortest time, in seconds. It’s always possible to arrive at t from s.
Sample Input
3 2 1 3
1 2 5 6 3
2 3 7 7 6
3 2 1 3
1 2 5 6 3
2 3 9 5 6
Sample Output
Case 1: 20
Case 2: 9
题意:就是有一个赛车比赛,比赛的路径上就是有关卡,然后给你你通过关卡所需要的时间,但是这关卡是有限制的,它会定时开放a秒,接着关闭b秒,现在给你起点、终点、开放的时间、关闭的时间、以及通过关卡所需时间,让你求到达终点所需的最短时间。
分析:用迪杰斯特拉算法的优化队列解决此问题
AC代码:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<limits.h> using namespace std; #define maxn 300 #define maxm 50000 struct node { int x,y,l,r,s; }edge[2*maxm+5]; int sum[maxn+5]; int vis[maxn+5]; int dis[maxn+5]; int n,m,be,end; int cmp(node x,node y) { return x.x<y.x; } void dijkstra() { for(int c=1;c<=n;c++) { int min=INT_MAX;/*整型最大值,不用定义,可直接调用。INT_MAX定义在LIMITS.H中,浮点数对应的是FLOAT.H,部分类型的定义对应的是STDDEF.H*/ int pos=0; for(int i=1;i<=n;i++) if(!vis[i]&&dis[i]<min) { min=dis[i]; pos=i; } if(min==INT_MAX) break; vis[pos]=1;//加入集合 for(int i=sum[pos-1]+1;i<=sum[pos];i++) { if(!vis[edge[i].y]&&edge[i].l>=edge[i].s)//少写了等号 { int lt=edge[i].l-dis[pos]%(edge[i].l+edge[i].r);//路开启所剩时间 int cost;//通过这条路需要的时间 if(lt>=edge[i].s)//剩余时间足够通过这条路 cost=edge[i].s; else cost=lt+edge[i].r+edge[i].s;//时间不够等待下次开路 if(dis[pos]+cost<dis[edge[i].y])//更新最短路 dis[edge[i].y]=dis[pos]+cost; } } } } int main() { int T=0,end; while(~scanf("%d %d %d %d",&n,&m,&be,&end)) { int u,v,a,b,t; memset(sum,0,sizeof(sum)); for(int i=1;i<=m;i++) { scanf("%d %d %d %d %d",&u,&v,&a,&b,&t); edge[i]=(node){u,v,a,b,t}; //edge[i+m]=(node){u,v,a,b,t}; sum[u]++;//是单向边还是不是单向边 //sum[v]++; } //sort(edge+1,edge+2*m+1,cmp); sort(edge+1,edge+m+1,cmp); for(int i=2;i<=n;i++)//i=2 sum[i]=sum[i]+sum[i-1]; for(int i=1;i<=n;i++) dis[i]=123456789; for(int i=sum[be-1]+1;i<=sum[be];i++) { if(edge[i].l>=edge[i].s&&dis[edge[i].y]>edge[i].s)//时间够通过这条路 dis[edge[i].y]=edge[i].s; } memset(vis,0,sizeof(vis)); vis[be]=1;//标记起点已经走过 dijkstra(); T++; printf("Case %d: %d\n",T,dis[end]); } return 0; }