两篇论文之CNN中正交操作

  CNN的权值正交性和特征正交性,在一定程度上是和特征表达的差异性存在一定联系的。

  下面两篇论文,一篇是在训练中对权值添加正交正则提高训练稳定性,一篇是对特征添加正交性的损失抑制过拟合。

第一篇:Orthonormality Regularization

Xie D, Xiong J, Pu S. All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation[J]. 2017.

contributions

作者针对较深较宽网络训练困难(梯度弥散和爆炸),信号在网络传输不够稳定,提出了两点:

1.强调Conv+BN+ReLU这种module在训练中的必要性

2.提出一种权值的(Orthonormality Regularization)正交正则

另附BN层作用

BN能保证输入和输出的分布一致,从而避免出现梯度弥散和梯度爆炸的情况。

使用公式说明:

当w的N次方过小或者过大时,会出现对应的梯度弥散和梯度爆炸。
而经过BN处理后,会生成均值为0,方差为1的高斯分布(假设输入是高斯分布),从而解决了w的尺度所带来的问题。

Orthonormality Regularization

  y = WTx,如果||y|| = ||x||,则我们称这种线性变化是保范的,等价条件是W属于正交矩阵,如下式推导:

  即可计算出正交正则,用于替代SGD中的L2 正则:

experiments

采用44层的残差网络在CIFAR-10数据集上进行训练和测试。两组实验进行对比:
1. 正交初始化+正交正则
2. msra初始化+L2正则

权值非相关性变化过程:
计算网络中各同层卷积核之间的相似度的平均值,作为网络的权值相关系数

最终性能结果:

第二篇:DeCov Loss

Cogswell M, Ahmed F, Girshick R, et al. Reducing Overfitting in Deep Networks by Decorrelating Representations[J]. Computer Science, 2015.

a conference paper at ICLR 2016

   作者发现特征相关性较大时,特征差异小,模型泛化较差。而常用的增强泛化的方法是,提高样本多样性和dropout。

contributions

  提出DeCov Loss增强特征的非相关性,提高模型泛化性能

特征相关性和泛化性能关系的讨论

  特征相关性,使用特征的协方差矩阵C的Frobenius范数作为指标。 用以下指标描述第i个和第j个激活值的相关性。值越大,相关性越大。

  泛化性能,使用训练准确率和验证准确率的差值作为指标,差值越小说明泛化越好。

Decov Loss

矩阵的C的Frobenius范数:

协方差:

反应两组随机变量的相关性,相关系数如下,其中 ,等于0即为完全非相关,等于1为完全相关。

当特征完全非相关的理想情况下,协方差矩阵C是一个对角阵。便有了以下的loss:

对应的梯度计算是:

  

experiments

使用NIN网络,DeCov作用于avg pool层,DeCov Loss和dropout搭配使用泛化性能更好

原文地址:https://www.cnblogs.com/dingz/p/9366129.html

时间: 2024-10-10 06:47:50

两篇论文之CNN中正交操作的相关文章

《转载-两篇很好的文章整合》Android中自定义控件

两篇很好的文章,有相互借鉴的地方,整合到一起收藏 分别转载自:http://blog.csdn.net/xu_fu/article/details/7829721 http://www.cnblogs.com/0616--ataozhijia/p/4003380.html Android系统的视图结构的设计也采用了组合模式,即View作为所有图形的基类,Viewgroup对View继承扩展为视图容器类,由此就得到了视图部分的基本结构--树形结构 View定义了绘图的基本操作 基本操作由三个函数完

Delphi中的操作二进制文件的两个重要函数

Delphi中的操作二进制文件的两个重要函数 对于通过Byte数组进行文件操作的,在FTP中经常会使用到,我也是在Delphi调用Web Service进行文件的上传和下载时找到这两个函数的,挺好用的,推荐给大家.(申明:非本人所写) 1. 将Byte数组生成文件 procedure ByteArrayToFile(const ByteArray : TByteDynArray; const FileName : string );var Count: integer; F: FIle of B

[转]DllMain中不当操作导致死锁问题的分析——DllMain中要谨慎写代码(完结篇)

在CSDN中发现这篇文章,讲解的比较详细,所以在这里备份一个.原文链接:http://blog.csdn.net/breaksoftware/article/details/8167641 DllMain的相关特性 首先列出<DllMain中不当操作导致死锁问题的分析--进程对DllMain函数的调用规律的研究和分析>中论证的11个特性: Dll的加载不会导致之前创建的线程调用其DllMain函数. 线程创建后会调用已经加载了的DLL的DllMain,且调用原因是DLL_THREAD_ATTA

CVPR 2018 | 腾讯AI Lab入选21篇论文详解

近十年来在国际计算机视觉领域最具影响力.研究内容最全面的顶级学术会议CVPR,近日揭晓2018年收录论文名单,腾讯AI Lab共有21篇论文入选,位居国内企业前列,我们将在下文进行详解,欢迎交流与讨论. 去年CVPR的论文录取率为29%,腾讯AI Lab 共有6篇论文入选,点击 这里可以回顾.2017年,腾讯 AI Lab共有100多篇论文发表在AI顶级会议上,包括ICML(4篇).ACL(3篇).NIPS(8篇)等. 我们还坚持与学界.企业界和行业「共享AI+未来」,已与美国麻省理工大学.英国

读完这100篇论文,你也是大数据高手!

引言 PayPal高级工程总监Anil Madan写了这篇大数据的文章,一共有100篇大数据的论文,涵盖大数据技术栈,全部读懂你将会是大数据的顶级高手.当然主要是了解大数据技术的整个框架,对于我们学习大数据有莫大好处. 开 源(Open Source)用之于大数据技术,其作用有二:一方面,在大数据技术变革之路上,开源在众人之力和众人之智推动下,摧枯拉朽,吐故纳新,扮演着非常重要的 推动作用.另一方面,开源也给大数据技术构建了一个异常复杂的生态系统.每一天,都有一大堆“新”框架.“新”类库或“新”

读完这100篇论文 就能成大数据高手(附论文下载)

100 open source Big Data architecture papers for data professionals. 读完这100篇论文 就能成大数据高手 作者 白宁超 2016年4月16日13:38:49 摘要:本文基于PayPal高级工程总监Anil Madan写的大数据文章,其中涵盖100篇大数据的论文,涵盖大数据技术栈(数据存储层.键值存储.面向列的存储.流式.交互式.实时系统.工具.库等),全部读懂你将会是大数据的顶级高手.作者通过引用Anil Madan原文和CS

建议程序员都读一读的31篇论文系列笔记(1~2)

序:前几日网上偶尔看到"程序员必读论文系列",顺便搜了一下,发现有多个版本共31篇,不过看起来都不错,故准备花时间都读一下,可以拓宽下视野.来源论文题目主要参考 http://blog.csdn.net/turingbook/article/details/3946421 和 http://top.jobbole.com/17733/ .每读完一篇论文就写些笔记,或长或短,也就是这几篇文章的由来. 1. An Axiomatic Basis for Computer Programmi

大数据学校(二)hadoop概述及Google的三篇论文

学习大数据,学什么?怎么学? 1.原理和运行机制.体系结构(非常重要)2.动手:搭建环境.写程序 目的:1.学习内容 2.熟悉一些名词 一.各章概述(Hadoop部分) (一).Hadoop的起源与背景知识 1.什么是大数据?两个例子.大数据的核心问题是什么? 举例: (1)商品推荐:问题1:大量的订单如何存储? 问题2:大量的订单如何计算? (2)天气预报:问题1:大量的天气数据如何存储? 问题2:大量的天气数据如何计算? 大数据的核心问题: (1)数据的存储:分布式文件系统(分布式存储)(2

反应堆模式最牛的那篇论文--由solidmango执笔翻译

The Reactor:An Object-Oriented Wrapper for Event-Driven Port Monitoring and Service Demultiplexing 反应堆模式:一种应用于事件驱动的端口监控和服务多路化的面向对象封装器 Douglas C. Schmidt An earlier version of this paper appeared in the February 1993 issue of the C++ Report. 这篇文章的早期版本