【题解】AHOI2009同类分布

  好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(????)?"

  实际上这题只要顺藤摸瓜就可以了。首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数;2.0/1状态表示是否受限制(这一条是因为有数字上限)。然后根据这两个维度来接着往下想。第二个维度先撇开不看,我们只考虑如何从第 \(i - 1\) 位dp到第 \(i\) 位。在这里其实卡了有点久,因为如果除数与被除数都在改变,那么两维的转移是非常凉凉的。

  这个时候联想题目的特殊性质 ----- 当感觉无法优化转移 / 转移方式的时候,考虑状态的重新设计 & 题目的特别要求。然后很开心的发现:\(1e18\) 实际上各位数字的和最大都只有 \(162\)。那么岂不是乱搞也可以?所以我们固定除数 \(Q\) 为 \(\left ( 1, 162 \right )\) 当中的任意一个数,分别进行dp即可。此时的转移就简单了,因为除数固定,自然地追加一维表示余数。状态固定为 \(f[i][j][k][L]\),表示dp到第 \(i\) 位,要求第 \(\left ( 1, i \right )\) 位的数字之和加起来为 \(j\),且原数除以 \(Q\) 的余数为 \(k\),限制为\(L\left ( 0, 1 \right )\)的总个数。

  感觉这份代码写的还行,跑得也还行……能看。

#include <bits/stdc++.h>
using namespace std;
#define int long long
int a[20], Res, mul[20];
int f[20][165][165][2];

int read()
{
    int x = 0, k = 1;
    char c;
    c = getchar();
    while(c < ‘0‘ || c > ‘9‘) { if(c == ‘-‘) k = -1; c = getchar(); }
    while(c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - ‘0‘, c = getchar();
    return x * k;
}

#define Pre f[now][tot][rm][lim]
int DP(int now, int tot, int rm, bool lim)
{
    if(~Pre) return Pre;
    else Pre = 0;
    if(tot > now * 9) return 0;
    if(now == 1)
    {
        if(tot > 9 || (tot > a[now] && lim)) return Pre = 0;
        return Pre = ((Pre = tot % Res == rm) ? 1 : 0);
    }
    for(int i = 0; i <= 9; i ++)
    {
        if(i > a[now] && lim) break;
        if(tot < i) break;
        int q = (mul[now] * i) % Res; q = q % Res;
        int L = (i == a[now] && lim);
        f[now][tot][rm][lim] += DP(now - 1, tot - i, (rm - q + Res) % Res, L);
    }
    return f[now][tot][rm][lim];
}
#undef Pre

int Solve(int x)
{
    int k = x, ans = 0, num = 0;
    while(k) num ++, a[num] = k % 10, k /= 10;
    for(int i = 1; i <= 163; i ++)
    {
        Res = i; if(i > num * 9) continue;
        memset(f, -1, sizeof(f));
        ans += DP(num, i, 0, 1);
    }
    return ans;
}

signed main()
{
    int a = read(), b = read(); mul[1] = 1;
    for(int i = 2; i <= 20; i ++) mul[i] = mul[i - 1] * 10;
    printf("%lld\n", Solve(b) - Solve(a - 1));
    return 0;
}

原文地址:https://www.cnblogs.com/twilight-sx/p/9114248.html

时间: 2024-10-07 19:31:04

【题解】AHOI2009同类分布的相关文章

[AHOI2009]同类分布

[AHOI2009]同类分布 求区间\([l,r]\)内的数,满足自己能整除自己各个数位上的和的数的个数,\(l,r\leq 10^{18}\). 解 不难得知设\(f_n\)为n以内的满足条件的数,答案即\(f_r-f_l\),因为递推中要表现整除,可以考虑摸递推. 要表现各个数位的和,又要变现长度,而且还要表现摸数,还有余数,故设\(f[i][j][k][l]\)表示i位的数,各数位的和为j,摸数为k,余数为l的数的方案数,因此不难有 \[f[i][j][k][l]=\sum_{p=0}^9

P4127 [AHOI2009]同类分布

链接:https://www.luogu.org/problemnew/show/P4127 题目描述 给出两个数 a,ba,b ,求出 [a,b][a,b] 中各位数字之和能整除原数的数的个数. 输入输出格式 输入格式: 一行,两个整数 aa 和 bb 输出格式: 一个整数,表示答案 输入输出样例 输入样例#1: 复制 10 19 输出样例#1: 复制 3 说明 对于所有的数据, 1 ≤ a ≤ b ≤ 10^18 题解:数位dp, 但有一个问题,我们不知道各个数位数字之和:18*9是很小的,

[luogu4127 AHOI2009] 同类分布 (数位dp)

传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> #define Re registe

【数位DP】【P4127】[AHOI2009]同类分布

Description 给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数. Limitations \(1 \leq a,~b \leq 10^{18}\) Solution 考虑数位DP. 设数字 \(A = \sum_{i = 0}^k a_i \times 10^i\),其数字和 \(B = \sum_{i = 0}^k a_i\) 那么 \(A\) 满足条件即为 \(A \equiv 0 \pmod B\),根据同余的性质,可以将求和符号拆开:

bzoj 1799: [Ahoi2009]self 同类分布 题解

[原题] 1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB Submit: 554  Solved: 194 [Submit][Status] Description 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. Input Output Sample Input 10 19 Sample Output 3 HINT [约束条件]1 ≤ a ≤ b ≤ 10^18 Source Day1 [分析]

BZOJ1799 self 同类分布 数位dp

BZOJ1799self 同类分布 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和<9*18=1622.所以,dp[i][j][k][m]表示有i位(允许有前导0),数位和为k,模数为m,前i位与模数的模为j的符合条件的数的个数.这样要炸空间,怎么办!!其实这个dp的最后一维可以省去,因为对于不同的m值,dp互不相干.这样还是要超时的,有5亿多.于是就要卡常数,具体见代码里面的枚举的上下界. 代码 #

HYSBZ - 1799 self 同类分布

self 同类分布 HYSBZ - 1799 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.Sample Input 10 19 Sample Output 3 Hint [约束条件]1 ≤ a ≤ b ≤ 10^18 约束:一个数是它自己数位和的倍数,直接dp根本找不到状态,枚举数位和,因为总就162,然后问题就变成了一个数%mod=0,mod是枚举的,想想状态:dp[pos][sum][val],当前pos位上数位和是sum,val就是在算这个数%mod,(从高位算  *10

【BZOJ】1799: [Ahoi2009]self 同类分布

[题意]给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1 ≤ a ≤ b ≤ 10^18 [算法]数位DP [题解] 感觉这种方法很暴力啊. 枚举数位和1~162(不能枚举0,不然会模0,相当于除0),记忆化f[pos][sum][val],sum表示当前数位和,val表示数字取模枚举的数位和. 每次sum+i和(val*10+i)%MOD转移. sum用减法优化,即记忆化(MOD-sum),但是枚举过程中都要memset,导致效率低下,记忆化效果很差. 要什么方法才能跑1.3s

bzoj1799 [Ahoi2009]self 同类分布

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1799 [题解] 一眼看过去,数位dp! 想了想,发现数字和最多也就是$m = 9 \times 18 = 162$种,好像不是很大. 考虑枚举每种数字和$p$,做一遍dp. 设$f_{i,j,k}$表示到第$i$位,当前真实数字模$p$余$j$,当前所有数字的和为$k$的方案数.(不考虑前导0问题) 这个可以通过一个$O(18\times p^2 \times 10)$的动态规划解决. 接