数据分析、数据挖掘、机器学习、神经网络、深度学习和人工智能概念区别(入门级别)

数据分析, 就是对数据进行分析, 得出一些结论性的内容, 用于决策。 分析什么哪? 根据分析现状、 分析原因、 预测未来。 分析现状和分析原因, 需要结合业务才能解释清楚。 用到的技术比较简单, 最简单的数据分析工具就是 Excel。 预测未来指的是分析未来一段时间的销售额之类的。 在预测未来方面, 一般用到数据挖掘的技术了。
  数据挖掘, 从字面意思上看, 是从数据中挖掘出有价值的信息。 比如, 超市通过对一段时间的客户消费记录能发现, 哪些物品经常被顾客一起购买。 那么, 就可以把这些物品摆放的位置近一些, 或者一起促销。 在这里, 客户的消费记录是“数据” , “挖掘” 出的信息是哪些商品经常被一起购买。 “价值” 指的是超市可以据此搞促销, 提高超市的销售额。 挖掘出这些有价值信息的方法就是课程中需要学习的。 数据挖掘关注的是一些方法如何在商业中应用, 并不是纯粹的理论和学术。
  机器学习, 是研究如何让计算机去学习。 学习什么哪? 根据一些过去的事实, 学习如何适应新的环境。太小白了, 严肃点! 机器学习, 是研究算法的学科, 研究的是如何让计算机根据以往的经验去适应新的环境。 这里“以往的经验” 指的是历史数据, “适应” 指的是通过历史数据创造一个很牛逼的函数, “新的环境” 指的是把新的数据输入到这个函数中, 产生一个新的输出。 机器学习本质上是研究自学习算法的科学, 这些算法是帮助软件和机器进行自我学习解决问题的算法。
  神经网络, 是机器学习中的一个算法模型, 指的是模拟人的神经系统。 大家知道, 人的神经非常复杂,所以神经网络算法需要的计算量很大。 神经网络在以前一直不温不火, 原因是计算机硬件不足以支撑神经网络的计算量。 现在大数据技术的发展, 让神经网络迎来了春天。 比如人脸识别、 交通领域的车牌识别技
术都是神经网络的应用。
  深度学习, 属于神经网络的一个发展分支, 指的是层数很多的神经网络, 可以简单理解为更加高级的神经网络。 把神经网络比作数学学科, 深度学习类似于高等数学。 无人驾驶汽车属于深度学习的典型应用。
  人工智能, 缩写是 AI, 就是像人一样的智能、 会思考。 人工智能更适合理解为一个产业, 泛指产生更加智能的软件和硬件。 人工智能实现的方法就是机器学习, 所以谈人工智能技术, 实际上就是机器学习的各种算法的应用。 各种智能家居、 智能机器人都是人工智能产业的方向。
  综上, 人工智能就是一个产业, 人工智能的实现手段主要靠机器学习的各种算法。 在机器学习的算法中, 深度学习是一个智能化程度非常高的算法。 现在云计算和大数据技术的发展, 让神经网络和深度学习得以在实际中应用。
  大数据时代, 数据是企业的最值钱的财富, 但海量的数据并非都是有价值的, 如何挖掘出有用的数据变成商业价值, 就需要机器学习算法。 大数据和机器学习势必颠覆传统行业的运营方式, 必将驱动公司业务的发展。 目前, 越来越多的机器学习/数据挖掘/深度学习算法被应用在电商、 搜索、 金融、 游戏, 医疗等
领域中的分析、 挖掘、 推荐上。
  但懂机器学习算法的人才却少之又少, 物以稀为贵, 致使这个行业的工资奇高。 

原文地址:https://www.cnblogs.com/wangsongbai/p/9116205.html

时间: 2024-09-30 18:33:05

数据分析、数据挖掘、机器学习、神经网络、深度学习和人工智能概念区别(入门级别)的相关文章

云计算、机器学习、深度学习、人工智能和大数据,主要有什么关系?

业外人士如何了解云计算.机器学习.深度学习.人工智能.和大数据之间有什么内在联系?从应用的角度来阐述一下这五个概念之间的联系. 这五个概念按照领域可以划分成两个大部分,先分别介绍这些概念的内部联系,然后再综合介绍他们整体之间的联系. 云计算和大数据 云计算和大数据的很多研究内容是重叠的,比如分布式存储.分布式计算,可以说大数据是云计算发展到一定阶段的产物.云计算和大数据之间主要的区别在于关注的"点"不同,云计算强调服务(IaaS.PaaS.SaaS),而大数据则强调数据的价值(数据采集

机器学习、深度学习的理论与实战入门建议整理

引言 拿到这份文档时想必你的脑海中一直萦绕着这么一个问题,"机器学习/深度学习要怎么学呢?(怎么入门,又怎么进一步掌握?)".关于这个问题其实并没有一个标准答案,有的人可能适合自底向上的学,也就是先从理论和数学开始,然后是算法实现,最后再通过一些项目去解决生活中的实际问题:有的人则可能适合自顶向下的学,也就是在弄清楚什么是机器学习及为什么学机器学习后,先确定一个系统性的用机器学习来解决实际问题的程序,然后找到一个合适的工具,接着再在各种数据集上做练习以不断加强自己的实践能力与巩固对算法

Python神经网络算法与深度学习视频教程人工智能算法机器学习实战视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

认识:人工智能AI 机器学习 ML 深度学习DL

人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识.思维的信息过程的模拟.人工智能不是人的智能,但能像人那样思考.也可能超过人的智能. 人工智能的定义可以分为两部分,即"人工"和"智能". 机器学习 1.    什么是机器学习 根据等人事件中判断人是否迟到了解什么是机器学习,具体参见地址:http://www.cnblo

人工智能,神经网络算法,机器学习,深度学习三者关系

对于很多初入学习人工智能的学习者来说,对人工智能.机器学习.深度学习的概念和区别还不是很了解,有可能你每天都能听到这个概念,也经常提这个概念,但是你真的懂它们之间的关系吗?那么接下来就给大家从概念和特点上进行阐述.先看下三者的关系. 人工智能包括了机器学习和深度学习,机器学习包括了深度学习,他们是子类和父类的关系. 下面这张图则更加细分. 2.什么是人工智能 人工智能(ArtificialIntelligence),英文缩写为AI.是计算机科学的一个分支.人工智能是对人的意识.思维的信息过程的模

python入门、python数据分析(numpy、matplotlib、sklearn等)tensflow、爬虫、机器学习、深度学习、自然语言处理、数据挖掘、机器学习项目实战、python全栈、PHP、java、java web、openCV、hadoop、matlab、android、数据结构算法和刷题等教学视频

扫描二维码加好友购买视频,绝对优惠,谢谢支持. python入门和进阶熟练教学视频 入门: 进阶: python数据分析教学视频 python数据分析晋级班 tensorflow教程及实战 python爬虫教学 机器学习课程 深度学习课程 机器学习项目班 自然语言处理教学视频 python全栈教学视频 数据挖掘视频 PHP教学视频 java java web openCV教学视频 Hadoop教学视频 matlab教学 andriod教学视频 数据结构算法班及面试班 原文地址:https://w

人工智能,机器学习,深度学习的区别

先来看看自维基百科的定义 什么是人工智能? 人工智能(Artificial Intelligence, AI)亦称机器智能,是指由人制造出来的机器所表现出来的智能.通常人工智能是指通过普通电脑程式的手段实现的类人智能技术.该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域. 一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统.约翰·麦卡锡于1955年的定义是“制造智能机器的科学与工程.”

简单读懂人工智能:机器学习与深度学习是什么关系

引言:随着AlphaGo战胜李世石,人工智能和深度学习这些概念已经成为一个非常火的话题.人工智能.机器学习与深度学习这几个关键词时常出现在媒体新闻中,并错误地被认为是等同的概念.本文将介绍人工智能.机器学习以及深度学习的概念,并着重解析它们之间的关系.本文将从不同领域需要解决的问题入手,依次介绍这些领域的基本概念以及解决领域内问题的主要思路.本文选自<Tensorflow:实战Google深度学习框架>. 从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作.利用巨大的存储空间和超