Flume架构以及应用介绍[转]

在具体介绍本文内容之前,先给大家看一下Hadoop业务的整体开发流程: 

从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引出我们本文的主角—Flume。本文将围绕Flume的架构、Flume的应用(日志采集)进行详细的介绍。 
(一)Flume架构介绍 
1、Flume的概念 
 
flume是分布式的日志收集系统,它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到图中的HDFS,简单来说flume就是收集日志的。 
2、Event的概念 
在这里有必要先介绍一下flume中event的相关概念:flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume在删除自己缓存的数据。 
在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?—–event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录,event也是事务的基本单位。event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。 
为了方便大家理解,给出一张event的数据流向图: 
 
一个完整的event包括:event headers、event body、event信息(即文本文件中的单行记录),如下所以: 

其中event信息就是flume收集到的日记记录。 
3、flume架构介绍 
flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent,agent本身是一个java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。 
agent里面包含3个核心的组件:source—->channel—–>sink,类似生产者、仓库、消费者的架构。 
source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。 
channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。 
sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、hbase、solr、自定义。 
4、flume的运行机制 
flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据的输入——source,一个是数据的输出sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方—-例如HDFS等,注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。 
5、flume的广义用法 
flume之所以这么神奇—-其原因也在于flume可以支持多级flume的agent,即flume可以前后相继,例如sink可以将数据写到下一个agent的source中,这样的话就可以连成串了,可以整体处理了。flume还支持扇入(fan-in)、扇出(fan-out)。所谓扇入就是source可以接受多个输入,所谓扇出就是sink可以将数据输出多个目的地destination中。 
 
(二)flume应用—日志采集 
对于flume的原理其实很容易理解,我们更应该掌握flume的具体使用方法,flume提供了大量内置的Source、Channel和Sink类型。而且不同类型的Source、Channel和Sink可以自由组合—–组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。下面我将用具体的案例详述flume的具体用法。 
其实flume的用法很简单—-书写一个配置文件,在配置文件当中描述source、channel与sink的具体实现,而后运行一个agent实例,在运行agent实例的过程中会读取配置文件的内容,这样flume就会采集到数据。 
配置文件的编写原则: 
1>从整体上描述代理agent中sources、sinks、channels所涉及到的组件

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1

2>详细描述agent中每一个source、sink与channel的具体实现:即在描述source的时候,需要

指定source到底是什么类型的,即这个source是接受文件的、还是接受http的、还是接受thrift 
的;对于sink也是同理,需要指定结果是输出到HDFS中,还是Hbase中啊等等;对于channel 
需要指定是内存啊,还是数据库啊,还是文件啊等等。

    # Describe/configure the source
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444

    # Describe the sink
    a1.sinks.k1.type = logger

    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100

3>通过channel将source与sink连接起来

    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1

启动agent的shell操作:

    flume-ng  agent -n a1  -c  ../conf   -f  ../conf/example.file
    -Dflume.root.logger=DEBUG,console  

参数说明: -n 指定agent名称(与配置文件中代理的名字相同)

-c 指定flume中配置文件的目录 
-f 指定配置文件 
-Dflume.root.logger=DEBUG,console 设置日志等级

具体案例: 
案例1: NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。 其中 Sink:logger Channel:memory 
flume官网中NetCat Source描述:

Property Name Default     Description
channels       –
type           –     The component type name, needs to be netcat
bind           –  日志需要发送到的主机名或者Ip地址,该主机运行着netcat类型的source在监听
port           –  日志需要发送到的端口号,该端口号要有netcat类型的source在监听      

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.80.80
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/netcat.conf   -Dflume.root.logger=DEBUG,console

c) 使用telnet发送数据

telnet  192.168.80.80  44444  big data world!(windows中运行的)

d) 在控制台上查看flume收集到的日志数据:

案例2:NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。 其中 Sink:hdfs Channel:file (相比于案例1的两个变化) 
flume官网中HDFS Sink的描述: 

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.80.80
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/netcat.conf   -Dflume.root.logger=DEBUG,console

c) 使用telnet发送数据

telnet  192.168.80.80  44444  big data world!(windows中运行的)

d) 在HDFS中查看flume收集到的日志数据:

 
案例3:Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记该文件已完成或者删除该文件。其中 Sink:logger Channel:memory 
flume官网中Spooling Directory Source描述:

Property Name       Default      Description
channels              –
type                  –          The component type name, needs to be spooldir.
spoolDir              –          Spooling Directory Source监听的目录
fileSuffix         .COMPLETED    文件内容写入到channel之后,标记该文件
deletePolicy       never         文件内容写入到channel之后的删除策略: never or immediate
fileHeader         false         Whether to add a header storing the absolute path filename.
ignorePattern      ^$           Regular expression specifying which files to ignore (skip)
interceptors          –          指定传输中event的head(头信息),常用timestamp

Spooling Directory Source的两个注意事项:

①If a file is written to after being placed into the spooling directory, Flume will print an error to its log file and stop processing.
即:拷贝到spool目录下的文件不可以再打开编辑
②If a file name is reused at a later time, Flume will print an error to its log file and stop processing.
即:不能将具有相同文件名字的文件拷贝到这个目录下

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/datainput
a1.sources.r1.fileHeader = true
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/spool.conf   -Dflume.root.logger=DEBUG,console

c) 使用cp命令向Spooling Directory 中发送数据

 cp datafile  /usr/local/datainput   (注:datafile中的内容为:big data world!)

d) 在控制台上查看flume收集到的日志数据:


从控制台显示的结果可以看出event的头信息中包含了时间戳信息。 
同时我们查看一下Spooling Directory中的datafile信息—-文件内容写入到channel之后,该文件被标记了:

[root@hadoop80 datainput]# ls
datafile.COMPLETED

案例4:Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记该文件已完成或者删除该文件。 其中 Sink:hdfs Channel:file (相比于案例3的两个变化)

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/datainput
a1.sources.r1.fileHeader = true
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp

# Describe the sink
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/spool.conf   -Dflume.root.logger=DEBUG,console

c) 使用cp命令向Spooling Directory 中发送数据

 cp datafile  /usr/local/datainput   (注:datafile中的内容为:big data world!)

d) 在控制台上可以参看sink的运行进度日志:


d) 在HDFS中查看flume收集到的日志数据: 

 
从案例1与案例2、案例3与案例4的对比中我们可以发现:flume的配置文件在编写的过程中是非常灵活的。

案例5:Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源 
常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。 其中 Sink:hdfs Channel:file 
这个案列为了方便显示Exec Source的运行效果,结合Hive中的external table进行来说明。

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /usr/local/log.file

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

b)在hive中建立外部表—–hdfs://hadoop80:9000/dataoutput的目录,方便查看日志捕获内容

hive> create external table t1(infor  string)
    > row format delimited
    > fields terminated by ‘\t‘
    > location ‘/dataoutput/‘;
OK
Time taken: 0.284 seconds

c) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/exec.conf   -Dflume.root.logger=DEBUG,console

d) 使用echo命令向/usr/local/datainput 中发送数据

 echo  big data > log.file

d) 在HDFS和Hive分别中查看flume收集到的日志数据:

hive> select * from t1;
OK
big data
Time taken: 0.086 seconds

e)使用echo命令向/usr/local/datainput 中在追加一条数据

echo big data world! >> log.file

d) 在HDFS和Hive再次分别中查看flume收集到的日志数据:


hive> select * from t1;
OK
big data
big data world!
Time taken: 0.511 seconds

总结Exec source:Exec source和Spooling Directory Source是两种常用的日志采集的方式,其中Exec source可以实现对日志的实时采集,Spooling Directory Source在对日志的实时采集上稍有欠缺,尽管Exec source可以实现对日志的实时采集,但是当Flume不运行或者指令执行出错时,Exec source将无法收集到日志数据,日志会出现丢失,从而无法保证收集日志的完整性。

案例6:Avro Source:监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。 其中 Sink:hdfs Channel:file 
(注:Avro和Thrift都是一些序列化的网络端口–通过这些网络端口可以接受或者发送信息,Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制) 
Avro Source运行原理如下图: 
 
flume官网中Avro Source的描述:

Property     Name   Default Description
channels      –
type          –     The component type name, needs to be avro
bind          –     日志需要发送到的主机名或者ip,该主机运行着ARVO类型的source
port          –     日志需要发送到的端口号,该端口要有ARVO类型的source在监听

1)编写配置文件

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.80.80
a1.sources.r1.port = 4141

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/avro.conf   -Dflume.root.logger=DEBUG,console

c)使用avro-client发送文件

flume-ng avro-client -c  ../conf  -H 192.168.80.80  -p 4141 -F /usr/local/log.file

注:log.file文件中的内容为:

[[email protected] local]# more log.file
big data
big data world!

d) 在HDFS中查看flume收集到的日志数据:


 

通过上面的几个案例,我们可以发现:flume配置文件的书写是相当灵活的—-不同类型的Source、Channel和Sink可以自由组合!

最后对上面用的几个flume source进行适当总结: 
① NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件 
就可以获取到信息。 
②Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文 
件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记 
该文件已完成或者删除该文件。 
③Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源 
常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。 
④Avro Source:监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。

 

原文地址:https://www.cnblogs.com/franson-2016/p/8963834.html

时间: 2024-10-29 02:45:13

Flume架构以及应用介绍[转]的相关文章

Flume架构以及应用介绍(转)

在具体介绍本文内容之前,先给大家看一下Hadoop业务的整体开发流程: 从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引出我们本文的主角-Flume.本文将围绕Flume的架构.Flume的应用(日志采集)进行详细的介绍. (一)Flume架构介绍 1.Flume的概念 flume是分布式的日志收集系统,它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到图中的HDFS,简单来说flume就是收集日志的. 2.

Flume入门笔记------架构以及应用介绍

在具体介绍本文内容之前,先给大家看一下Hadoop业务的整体开发流程: 从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引出我们本文的主角-Flume.本文将围绕Flume的架构.Flume的应用(日志采集)进行详细的介绍. (一)Flume架构介绍 1.Flume的概念 flume是分布式的日志收集系统,它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到图中的HDFS,简单来说flume就是收集日志的. 2.

多进程和多线程的架构的简单介绍

多进程和多线程的架构的简单介绍 多线程的意义为帮助你决定开发软件时采用多进程架构还是多线程架构.不了解这种区别会在大型软件的设计开发过程中造成困扰. Oracle的Unix/Linux版本采用多进程架构,不同的功能模块由不同的进程负责,Windows版本采用单进程多线程架构,所有的模块所在线程处在同一个进程当中.我们来看一下区别:1.进程管理.Oracle某个模块挂起了,没有响应,万般无奈你要重起这个模块,Unix平台只要重起这个模块所在的那个进程就可以了,其它进程保持运行,而Windows平台

Hbase入门笔记----架构以及应用介绍

Hbase全称为Hadoop Database,即Hbase是Hadoop的数据库,是一个分布式的存储系统.Hbase利用Hadoop的HDFS作为其文件存储系统,利用Hadoop的MapReduce来处理Hbase中的海量数据.利用zookeeper作为其协调工具. 本篇文章将重点介绍Hbase三个方面的内容:Hbase体系结构(架构)的介绍.Hbase shell的操作.Hbase的Java api的客户端操作. (一)Hbase的架构介绍 Hbase的体系结构是一个主从式的结构,主节点Hm

3星|《决战618》:京东前后台软件的架构级的介绍

决战618:探秘京东技术取胜之道(全彩) 京东前后台软件的架构级的介绍.风格接近技术演讲大会上的PPT,给出架构图,介绍软件功能. 跟阿里的<尽在双11>比起来,软件演化的历史说的太少,业务逻辑说的太少,另外几乎没有作者信息. 我是想从中看看京东的业务逻辑,看后感觉涉及到的业务逻辑有点少. 总体评价3星. 以下是书中一些内容的摘抄,#号后面是kindle电子版中的页码,[]中是我根据上下文补充的信息: 1:2004年,京东只有一组简单展示商品的网页,当时技术部门只是四五个人搭建的技术小组.京东

Flume架构及使用例子

Flume架构及核心组件 (1)Source 收集 负责从什么地方采集数据 (2)Channel 记录 (3)Sink 输出 官方文档 http://flume.apache.org/FlumeUserGuide.html http://flume.apache.org/FlumeUserGuide.html#starting-an-agent Flume使用思路 使用flume的关键就是写配置文件 (1)配置Source (2)配置Channerl (3)配置Sink (4)把以上三个组件串起

【转】一个Android项目搞定所有主流架构-1.项目介绍和基本MVC架构示例

http://www.jianshu.com/p/798536fb91c5 项目启发来自谷歌的同类框架项目https://github.com/googlesamples/android-architecture 然后找了个自己练手的App做了个更简易好理解版本的同类项目,开了个超级大坑~https://github.com/boredream/DesignResCollection 欢迎star项目以及follow我,项目将持续更新!!! DesignResCollection 提供同一个Ap

Hive入门笔记-----架构以及应用介绍

Hive这个框架在Hadoop的生态体系结构中占有及其重要的地位,在实际的业务当中用的也非常多,可以说Hadoop之所以这么流行在很大程度上是因为Hive的存在.那么Hive究竟是什么,为什么在Hadoop家族中占有这么重要的地位,本篇文章将围绕Hive的体系结构(架构).Hive的操作.Hive与Hbase的区别等对Hive进行全方面的阐述. 在此之前,先给大家介绍一个业务场景,让大家感受一下为什么Hive如此的受欢迎: 业务描述:统计业务表consumer.txt中北京的客户有多少位?下面是

分布式日志收集系统Apache Flume的设计详细介绍

问题导读: 1.Flume传输的数据的基本单位是是什么? 2.Event是什么,流向是怎么样的? 3.Source:完成对日志数据的收集,分成什么打入Channel中? 4.Channel的作用是什么? 5.取出Channel中的数据,进行相应的存储文件系统,数据库,或者提交到远程服务器,由谁来完成? 6.Flume支那些数据格式? 7.对于直接读取文件Source,有两种方式,分别是什么? 8.Channel有多种方式有哪些方式? 概述Flume是Cloudera公司的一款高性能.高可能的分布