Spark源码剖析(八):stage划分原理与源码剖析

引言

对于Spark开发人员来说,了解stage的划分算法可以让你知道自己编写的spark application被划分为几个job,每个job被划分为几个stage,每个stage包括了你的哪些代码,只有知道了这些之后,碰到某个stage执行特别慢或者报错,你才能快速定位到对应的代码,对其进行性能优化和排错

stage划分原理与源码

接着上期内核源码(五)的最后,每个action操作最终会调用SparkContext初始化时创建的DAGSchedule的runJob方法创建一个job:

那么这一篇就我们来探究一下每个job中stage到底是如何划分的

dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal, resultHandler, localProperties.get)

val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)

eventProcessLoop.post(JobSubmitted( jobId, rdd, func2, partitions.toArray, allowLocal, callSite, waiter, properties))

new DAGSchedulerEventProcessLoop(this)

dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, allowLocal, callSite, listener, properties)

跳转了这么多,我们终于找到了DAGScheduler的job调度核心入口handleJobSubmitted方法,该方法总共分为五步完成stage的划分和提交。

finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite)使用触发job的最后一个rdd创建finalStage

val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties)用finalStage创建一个job

submitStage(finalStage) stage划分算法重点!递归寻找父Stage!

val missing = getMissingParentStages(stage).sortBy(_.id)获取当前stage的父stage

submitMissingTasks(stage, jobId.get)提交某一个stage

val locs = getPreferredLocs(stage.rdd, id)给每个partition创建一个ShuffleMapTask或ResultTask(最后一个stage),并计算其运行的最佳位置

stage划分算法总结

1. 从finalStage倒推

2. 通过宽依赖,来进行新stage的划分

3. 使用递归,优先提交父stage

重要知识点

对于每一种有shuffle的操作,例如:groupByKey、reduceByKey、countByKey等,底层都对应了三个RDD

  • MapPartitionsRDD:对应父stage的最后一个RDD
  • ShuffleRDD:对应子stage的第一个RDD
  • MapPartitionsRDD:对应子stage的第二个RDD

原文地址:https://www.cnblogs.com/LiCheng-/p/8215531.html

时间: 2024-08-29 17:41:33

Spark源码剖析(八):stage划分原理与源码剖析的相关文章

Spark技术内幕:Stage划分及提交源码分析

当触发一个RDD的action后,以count为例,调用关系如下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#runJob org.apache.spark.scheduler.DAGScheduler#runJob org.apache.spark.scheduler.DAGScheduler#submitJob org.apache.spark.scheduler.DAGSchedulerEventProcess

Spark源码阅读(1): Stage划分

Spark中job由action动作生成,那么stage是如何划分的呢?一般的解答是根据宽窄依赖划分.那么我们深入源码看看吧 一个action 例如count,会在多次runJob中传递,最终会到一个函数 dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)dagScheduler是DAGScheduler的一个实例,因此,后面的工作都交给DAGSchedul

6.Spark streaming技术内幕 : Job动态生成原理与源码解析

原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/) Spark streaming 程序的运行过程是将DStream的操作转化成RDD的操作,Spark Streaming 和 Spark Core 的关系如下图(图片来自spark官网) Spark Streaming 会按照程序设定的时间间隔不断动态生成Job来处理输入数据,这里的Job生成是指将Spark Streaming 的程序翻译成Spark内核的RDD操作,翻译的过程并不会触发J

二维码的生成细节和原理

二维码的生成细节和原理 二维码又称QR Code,QR全称Quick Response,是一个近几年来移动设备上超流行的一种编码方式,它比传统的Bar Code条形码能存更多的信息,也能表示更多的数据类型:比如:字符,数字,日文,中文等等.这两天学习了一下二维码图片生成的相关细节,觉得这个玩意就是一个密码算法,在此写一这篇文章 ,揭露一下.供好学的人一同学习之. 关于QR Code Specification,可参看这个PDF:http://raidenii.net/files/datashee

[Spark传奇行动] 第34课:Stage划分和Task最佳位置算法源码彻底解密

本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这也是关系到整个作业有集群中该怎么运行:其次就是数据本地性,Spark 一舨的代码都是链式表达的,这就让一个任务什么时候划分成 Stage,在大数据世界要追求最大化的数据本地性,所有最大化的数据本地性就是在数据计算的时候,数据就在内存中.最后就是 Spark 的实现算法时候的略的怎么样.希望这篇文章能

Python源码剖析笔记3-Python执行原理初探

Python源码剖析笔记3-Python执行原理初探 本文简书地址:http://www.jianshu.com/p/03af86845c95 之前写了几篇源码剖析笔记,然而慢慢觉得没有从一个宏观的角度理解python执行原理的话,从底向上分析未免太容易让人疑惑,不如先从宏观上对python执行原理有了一个基本了解,再慢慢探究细节,这样也许会好很多.这也是最近这么久没有更新了笔记了,一直在看源码剖析书籍和源码,希望能够从一个宏观层面理清python执行原理.人说读书从薄读厚,再从厚读薄方是理解了

libevent源码深度剖析八

libevent源码深度剖析八 --集成信号处理张亮 现在我们已经了解了libevent的基本框架:事件管理框架和事件主循环.上节提到了libevent中I/O事件和Signal以及Timer事件的集成,这一节将分析如何将Signal集成到事件主循环的框架中. 1 集成策略--使用socket pair 前一节已经做了足够多的介绍了,基本方法就是采用"消息机制".在libevent中这是通过socket pair完成的,下面就来详细分析一下.      Socket pair就是一个s

第三十四课 Spark中任务处理的Stage划分和Task最佳位置算法

本节课的内容 1.     Job Stage的划分算法 2.     Task最佳计算位置算法 一.Stage划分算法 由于Spark的算子构建一般都是链式的,这就涉及了要如何进行这些链式计算,Spark的策略是对这些算子,鲜花分Stage,然后在进行计算. 由于数据是分布式的存储在各个节点上的,所以为了减少网络传输的开销,就必须最大化的追求数据本地性,所谓的数据本地性是指,在计算时,数据本身已经在内存中或者利用已有缓存无需计算的方式获取数据. 1.      Stage划分算法思想 (1)一

OpenCV2马拉松第27圈——SIFT论文,原理及源码解读

计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/28913101 简介 SIFT特征描述子是David G. Lowe 在2004年的ijcv会议上发表的论文中提出来的,论文名为<<Distinctive Image Featuresfrom Scale-Invariant Keypoints>>.这是一个很强大的算法,主要用于图像配准和物体识别等领域,但是其计算量相比也比较大,性价