机器学习00:如何通过Python入门机器学习

我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高。因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发。

我了解到Python的生态对入门机器学习很有帮助。因此希望以此作为突破口入门机器学习。

我将会记录一个系列的学习与实践记录。记录内容主要参考Youtubesentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下。

下面介绍一下我将如何通过Python入门机器学习。

学习Python基本语法

首先我在Python官网找到入门教程,快速过了一遍Python的基本语法。相信对于稍微有点编程基础的人来说这都不是事儿。

作为实践,接着我用Python实现了一个基于命令行翻译脚本。到此Python算入门了。

这里啰嗦一下Mac下的Python环境的搭建过程。我在这篇文章中介绍如何处理系统自带和自己安装的Python版本。

Python机器学习相关库

Python有好多涉及机器学习的库,如TheanoTensorFlowPyTorchscikit-learn等。考虑到scikit-learn(以后将简写为sklearn)对机器学习进行了高度封装与抽象,能够让初学者跳出数学的梦魇进行机器学习实践,我选择它作为入门的跳板。

除此之外还需要学习下面几个Python库,用于数据处理或者科学计算等。

出发机器学习冒险旅程

sklearn提供了很多机器学习的算法实现,在学习过程中我很难做到一个不漏地全面学习与覆盖。经过多番查找,我在Youtube上找到sentdex发布的视频“Machine Learning with Python”。至此,我也将跟随sentdex的脚步一步步进行学习。

后续的文章主要也是参考视频,并结合自己的理解进行必要的扩展。

初次看sklearn可以读一下官网的Tutorials文档。

其中“An introduction to machine learning with scikit-learn”章节可以让你初步了解sklearn这个库能做什么、机器学习基本概念、sklearn环境搭建、基础功能等。

而“A tutorial on statistical-learning for scientific data processing”章节能让你了解有关监督学习和非监督学习的基本概念。

深入原理

sklearn能够以黑盒方式提供机器学习算法的实现,这对初学者是有利的。但是如果仅仅停留在这里显然是不够的,如果不掌握一定的基础知识与原理,我们无法对显示问题进行建模与选型。所以在学习了sklearn的算法后,一定要查阅相关文档,了解算法背后的知识与原理。

这个过程应该是最艰难的,希望我们都不停留在这一步。

本文来自同步博客

原文地址:https://www.cnblogs.com/developerdaily/p/8440614.html

时间: 2024-11-05 20:48:32

机器学习00:如何通过Python入门机器学习的相关文章

python入门机器学习,3行代码搞定线性回归

本文着重是重新梳理一下线性回归的概念,至于几行代码实现,那个不重要,概念明确了,代码自然水到渠成. "机器学习"对于普通大众来说可能会比较陌生,但是"人工智能"这个词简直是太火了,即便是风云变化的股市中,只要是与人工智能.大数据.云计算相关的概念股票都会有很好的表现.机器学习是实现人工智能的基础,今天早上看了美国著名演员威尔斯密斯和世界最顶级的机器人进行对话的视频,视频中的机器人不论从语言还是表情都表达的非常到位,深感人工智能真的离我们越来越近了,所以学习人工智能前

【机器学习实验】用Python进行机器学习实验

概要 本文是用Python编程语言来进行机器学习小实验的第一篇.主要内容如下: 读入数据并清洗数据 探索理解输入数据的特点 分析如何为学习算法呈现数据 选择正确的模型和学习算法 评估程序表现的准确性 读入数据 Reading the data 当读入数据时,你将面临处理无效或丢失数据的问题,好的处理方式相比于精确的科学来说,更像是一种艺术.因为这部分处理适当可以适用于更多的机器学习算法并因此提高成功的概率. 用NumPy有效地咀嚼数据,用SciPy智能地吸收数据 Python是一个高度优化的解释

python入门、python数据分析(numpy、matplotlib、sklearn等)tensflow、爬虫、机器学习、深度学习、自然语言处理、数据挖掘、机器学习项目实战、python全栈、PHP、java、java web、openCV、hadoop、matlab、android、数据结构算法和刷题等教学视频

扫描二维码加好友购买视频,绝对优惠,谢谢支持. python入门和进阶熟练教学视频 入门: 进阶: python数据分析教学视频 python数据分析晋级班 tensorflow教程及实战 python爬虫教学 机器学习课程 深度学习课程 机器学习项目班 自然语言处理教学视频 python全栈教学视频 数据挖掘视频 PHP教学视频 java java web openCV教学视频 Hadoop教学视频 matlab教学 andriod教学视频 数据结构算法班及面试班 原文地址:https://w

Python3入门机器学习 经典算法与应用

详情请交流  QQ  709639943 00.Python3入门机器学习 经典算法与应用 00.老司机学python篇:第一季(基础速过.机器学习入门) 00.Python 从入门到精通 78节.2000多分钟.36小时的高质量.精品.1080P高清视频教程!包括标准库.socket网络编程.多线程.多进程和协程. 00.Django实战之用户认证系统 00.Django实战之企业级博客 00.深入浅出Netty源码剖析 00.NIO+Netty5各种RPC架构实战演练 00.JMeter 深

简单粗暴地入门机器学习

有很多小伙伴问过我零基础要怎么入门机器学习或者人工智能,今天来提炼一下,方便志同道合的朋友们参考. 记得我刚入此山洞准备修炼的时候,就 Google 了好多这类的问题,那时候觉得大家的建议好多呀,这条路看起来真长,那么多东西要学,那么多书要看,那么多有用的课程要学. 现在我可以就自己走过的坑坑包包来推荐一条简单粗暴的路径. [step 1: 方向] 在行动之前,先想好这几个最基本的问题,如果自己想不全都可以去搜一下,知乎上很多大拿的回答: --1.为什么要学习机器学习或者人工智能呢? 我的话,很

用Python开始机器学习(2:决策树分类算法)

http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q

一步一步入门机器学习之五:机器学习自学指南

事实上有许多的途径可以了解机器学习,也有许多的资源例如书籍.公开课等可为所用,一些相关的比赛和工具也是你了解这个领域的好帮手.本文我将围绕这个话题,给出一些总结性的认识,并为你由程序员到机器学习高手的蜕变旅程中提供一些学习指引. 机器学习的四个层次 根据能力可以将学习过程分成四个阶段.这也是一个有助于我们将所有学习资源进行分类的好方法. 初学阶段 新手阶段 中级阶段 高级阶段 我之所以把初学阶段和新手阶段区分开来,是因为我想让那些完全初学者(对这个领域感兴趣的程序员)在初学阶段对机器学习有一个大

半路出山想迅速上手Python做机器学习?这篇文章就是你需要的实用指南

毋庸置疑,近来机器学习人气日益高涨,逐渐在流行词榜单上占据一席之地.机器学习算法繁多,到底该选择哪一种处理相关数据是困扰很多学习者的问题.本文将以一种清晰简明的方式,解释并实践最常见的几种机器学习算法. 接下来,我们将罗列8种最常见火爆的机器学习算法,通过Python,将它们分别适用同一个经典数据集Iris(线性回归和逻辑回归除外),进而分辨出不同算法在预测准确率.模型建立过程.对数据集的使用方式等方向的异同.每一种算法后都将附上Python实现代码和演示视频. 推荐下我自己创建的Python学

8个用Python进行机器学习建模项目的实用建议,让新手小白精准避坑

很多伙伴是接触Python编程入门不久,我们用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我也有一套方法,是曾经踩过的雷总结出来的,现在在这里分享一下给大家!也希望大家少走弯路! 目录先放出来 项目文件事先做好归档 永远不要手动修改源数据并且做好备份 做好路径的正确配置 代码必要的地方做好备注与说明 加速你的Python循环代码 可视化你的循环代码进度 使用高效的异常捕获工具 要多考虑代码健壮性 1. 项目文件事先做好归档 每次开始一个新工作的时候,以前的我