题目描述
对于一个\(1\)到\(n\)的排列\(a_1,a_2,a_3,\ldots,a_n\),我们定义这个排列的\(P\)值和\(Q\)值:
对于每个\(a_i\),如果存在一个最小的\(j\)使得\(i<j\)且\(a_i<a_j\),那么将\(a_i\)和\(a_j\)连一条无向边。于是就得到一幅图。计算这幅图每个联通块的大小,将它们相乘,得到\(P\)。记\(Q=P^k\)。
对于\(1\)到\(n\)的所有排列,我们想知道它们的\(Q\)值之和。由于答案可能很大,请将答案对\(998244353\)取模。
\(n,k\leq 100000\)
题解
考虑从小到大插入这\(n\)个数。
设\(f_i\)为所有\(1\)~\(i\)的排列的\(Q\)值之和。
考虑\(i\)的位置,当\(i\)在第\(j\)个位置的时候,前面\(j\)个点是联通的,后面\(i-j\)个点与前面\(j\)个点不连通。
\[
\begin{align}
f_i&=\sum_{j=1}^i\binom{i-1}{j-1}(j-1)!j^kf_{i-j}\f_i&=\sum_{j=1}^i\frac{(i-1)!j^kf_{i-j}}{(i-j)!}\f_i&=(i-1)!\sum_{j=1}^ij^k\frac{f_{i-j}}{(i-j)!}
\end{align}
\]
用分治FFT加速。
时间复杂度:\(O(n\log k+n\log^2n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const ll p=998244353;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a%p;
a=a*a%p;
b>>=1;
}
return s;
}
namespace ntt
{
const ll g=3;
ll w1[270010];
ll w2[270010];
int rev[270010];
int n;
void init(int m)
{
n=1;
while(n<m)
n<<=1;
int i;
for(i=2;i<=n;i<<=1)
{
w1[i]=fp(g,(p-1)/i);
w2[i]=fp(w1[i],p-2);
}
rev[0]=0;
for(i=1;i<n;i++)
rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
}
void ntt(ll *a,int t)
{
ll u,v,w,wn;
int i,j,k;
for(i=0;i<n;i++)
if(rev[i]<i)
swap(a[i],a[rev[i]]);
for(i=2;i<=n;i<<=1)
{
wn=(t==1?w1[i]:w2[i]);
for(j=0;j<n;j+=i)
{
w=1;
for(k=j;k<j+i/2;k++)
{
u=a[k];
v=a[k+i/2]*w%p;
a[k]=(u+v)%p;
a[k+i/2]=(u-v)%p;
w=w*wn%p;
}
}
}
if(t==-1)
{
ll inv=fp(n,p-2);
for(i=0;i<n;i++)
a[i]=a[i]*inv%p;
}
}
ll x[270010];
ll y[270010];
void copy_clear(ll *a,ll *b,int m)
{
int i;
for(i=0;i<m;i++)
a[i]=b[i];
for(i=m;i<n;i++)
a[i]=0;
}
void copy(ll *a,ll *b,int m)
{
int i;
for(i=0;i<m;i++)
a[i]=b[i];
}
void inverse(ll *a,ll *b,int m)
{
if(m==1)
{
b[0]=fp(a[0],p-2);
return;
}
inverse(a,b,m>>1);
init(2*m);
copy_clear(x,a,m);
copy_clear(y,b,m>>1);
ntt(x,1);
ntt(y,1);
int i;
for(i=0;i<n;i++)
x[i]=(2*y[i]%p-x[i]*y[i]%p*y[i]%p+p)%p;
ntt(x,-1);
copy(b,x,m);
}
};
ll fac[300010];
ll ifac[300010];
ll inv[300010];
ll f[300010];
ll a[300010];
ll b[300010];
ll ex[300010];
int n,k;
void solve(int l,int r)
{
if(l==r)
{
f[l]=f[l]*fac[l-1]%p;
return;
}
int mid=(l+r)>>1;
solve(l,mid);
ntt::init(r-l+1);
int i;
for(i=l;i<=mid;i++)
a[i-l]=f[i]*ifac[i];
for(i=l;i<=r;i++)
b[i-l]=ex[i-l];
for(i=mid-l+1;i<ntt::n;i++)
a[i]=0;
for(i=r-l+1;i<ntt::n;i++)
b[i]=0;
ntt::ntt(a,1);
ntt::ntt(b,1);
for(i=0;i<ntt::n;i++)
a[i]=a[i]*b[i]%p;
ntt::ntt(a,-1);
for(i=mid+1;i<=r;i++)
f[i]+=a[i-l];
solve(mid+1,r);
}
int main()
{
open("xsy2166");
scanf("%d%d",&n,&k);
int i;
fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
for(i=2;i<=n;i++)
{
inv[i]=-(p/i)*inv[p%i]%p;
fac[i]=fac[i-1]*i%p;
ifac[i]=ifac[i-1]*inv[i]%p;
}
for(i=1;i<=n;i++)
{
ex[i]=fp(i,k);
f[i]=ex[i];
}
solve(1,n);
ll ans=(f[n]+p)%p;
printf("%lld\n",ans);
return 0;
}
原文地址:https://www.cnblogs.com/ywwyww/p/8513236.html
时间: 2024-09-28 16:26:49