大白话讲解BP算法(转载)

最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。

  说到神经网络,大家看到这个图应该不陌生:

  这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,…,xn},输出也是一堆数据{y1,y2,y3,…,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

  本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础

  假设,你有这样一个网络层:

  第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

  现在对他们赋上初值,如下图:

  其中,输入数据  i1=0.05,i2=0.10;

     输出数据 o1=0.01,o2=0.99;

     初始权重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

           w5=0.40,w6=0.45,w7=0.50,w8=0.55

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

  Step 1 前向传播

  1.输入层—->隐含层:

  计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

  同理,可计算出神经元h2的输出o2:

  

  2.隐含层—->输出层:

  计算输出层神经元o1和o2的值:

  

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

Step 2 反向传播

1.计算总误差

总误差:(square error)

但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:

2.隐含层—->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

下面的图可以更直观的看清楚误差是怎样反向传播的:

现在我们来分别计算每个式子的值:

计算

计算

(这一步实际上就是对sigmoid函数求导,比较简单,可以自己推导一下)

计算

最后三者相乘:

这样我们就计算出整体误差E(total)对w5的偏导值。

回过头来再看看上面的公式,我们发现:

为了表达方便,用来表示输出层的误差:

因此,整体误差E(total)对w5的偏导公式可以写成:

如果输出层误差计为负的话,也可以写成:

最后我们来更新w5的值:

(其中,是学习速率,这里我们取0.5)

同理,可更新w6,w7,w8:

3.隐含层—->隐含层的权值更新:

 方法其实与上面说的差不多,但是有个地方需要变一下,在上文计算总误差对w5的偏导时,是从out(o1)—->net(o1)—->w5,但是在隐含层之间的权值更新时,是out(h1)—->net(h1)—->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。

计算

先计算

同理,计算出:

          

两者相加得到总值:

再计算

再计算

最后,三者相乘:

为了简化公式,用sigma(h1)表示隐含层单元h1的误差:

最后,更新w1的权值:

同理,额可更新w2,w3,w4的权值:

  这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,在这个例子中第一次迭代之后,总误差E(total)由0.298371109下降至0.291027924。迭代10000次后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99]),证明效果还是不错的。

代码(Python):

  1 #coding:utf-8
  2 import random
  3 import math
  4
  5 #
  6 #   参数解释:
  7 #   "pd_" :偏导的前缀
  8 #   "d_" :导数的前缀
  9 #   "w_ho" :隐含层到输出层的权重系数索引
 10 #   "w_ih" :输入层到隐含层的权重系数的索引
 11
 12 class NeuralNetwork:
 13     LEARNING_RATE = 0.5
 14
 15     def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights = None, hidden_layer_bias = None, output_layer_weights = None, output_layer_bias = None):
 16         self.num_inputs = num_inputs
 17
 18         self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
 19         self.output_layer = NeuronLayer(num_outputs, output_layer_bias)
 20
 21         self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
 22         self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)
 23
 24     def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
 25         weight_num = 0
 26         for h in range(len(self.hidden_layer.neurons)):
 27             for i in range(self.num_inputs):
 28                 if not hidden_layer_weights:
 29                     self.hidden_layer.neurons[h].weights.append(random.random())
 30                 else:
 31                     self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
 32                 weight_num += 1
 33
 34     def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
 35         weight_num = 0
 36         for o in range(len(self.output_layer.neurons)):
 37             for h in range(len(self.hidden_layer.neurons)):
 38                 if not output_layer_weights:
 39                     self.output_layer.neurons[o].weights.append(random.random())
 40                 else:
 41                     self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
 42                 weight_num += 1
 43
 44     def inspect(self):
 45         print(‘------‘)
 46         print(‘* Inputs: {}‘.format(self.num_inputs))
 47         print(‘------‘)
 48         print(‘Hidden Layer‘)
 49         self.hidden_layer.inspect()
 50         print(‘------‘)
 51         print(‘* Output Layer‘)
 52         self.output_layer.inspect()
 53         print(‘------‘)
 54
 55     def feed_forward(self, inputs):
 56         hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
 57         return self.output_layer.feed_forward(hidden_layer_outputs)
 58
 59     def train(self, training_inputs, training_outputs):
 60         self.feed_forward(training_inputs)
 61
 62         # 1. 输出神经元的值
 63         pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
 64         for o in range(len(self.output_layer.neurons)):
 65
 66             # ?E/?z?
 67             pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[o].calculate_pd_error_wrt_total_net_input(training_outputs[o])
 68
 69         # 2. 隐含层神经元的值
 70         pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
 71         for h in range(len(self.hidden_layer.neurons)):
 72
 73             # dE/dy? = Σ ?E/?z? * ?z/?y? = Σ ?E/?z? * w??
 74             d_error_wrt_hidden_neuron_output = 0
 75             for o in range(len(self.output_layer.neurons)):
 76                 d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].weights[h]
 77
 78             # ?E/?z? = dE/dy? * ?z?/?
 79             pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_input()
 80
 81         # 3. 更新输出层权重系数
 82         for o in range(len(self.output_layer.neurons)):
 83             for w_ho in range(len(self.output_layer.neurons[o].weights)):
 84
 85                 # ?E?/?w?? = ?E/?z? * ?z?/?w??
 86                 pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[o].calculate_pd_total_net_input_wrt_weight(w_ho)
 87
 88                 # Δw = α * ?E?/?w?
 89                 self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight
 90
 91         # 4. 更新隐含层的权重系数
 92         for h in range(len(self.hidden_layer.neurons)):
 93             for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
 94
 95                 # ?E?/?w? = ?E/?z? * ?z?/?w?
 96                 pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[h].calculate_pd_total_net_input_wrt_weight(w_ih)
 97
 98                 # Δw = α * ?E?/?w?
 99                 self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight
100
101     def calculate_total_error(self, training_sets):
102         total_error = 0
103         for t in range(len(training_sets)):
104             training_inputs, training_outputs = training_sets[t]
105             self.feed_forward(training_inputs)
106             for o in range(len(training_outputs)):
107                 total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
108         return total_error
109
110 class NeuronLayer:
111     def __init__(self, num_neurons, bias):
112
113         # 同一层的神经元共享一个截距项b
114         self.bias = bias if bias else random.random()
115
116         self.neurons = []
117         for i in range(num_neurons):
118             self.neurons.append(Neuron(self.bias))
119
120     def inspect(self):
121         print(‘Neurons:‘, len(self.neurons))
122         for n in range(len(self.neurons)):
123             print(‘ Neuron‘, n)
124             for w in range(len(self.neurons[n].weights)):
125                 print(‘  Weight:‘, self.neurons[n].weights[w])
126             print(‘  Bias:‘, self.bias)
127
128     def feed_forward(self, inputs):
129         outputs = []
130         for neuron in self.neurons:
131             outputs.append(neuron.calculate_output(inputs))
132         return outputs
133
134     def get_outputs(self):
135         outputs = []
136         for neuron in self.neurons:
137             outputs.append(neuron.output)
138         return outputs
139
140 class Neuron:
141     def __init__(self, bias):
142         self.bias = bias
143         self.weights = []
144
145     def calculate_output(self, inputs):
146         self.inputs = inputs
147         self.output = self.squash(self.calculate_total_net_input())
148         return self.output
149
150     def calculate_total_net_input(self):
151         total = 0
152         for i in range(len(self.inputs)):
153             total += self.inputs[i] * self.weights[i]
154         return total + self.bias
155
156     # 激活函数sigmoid
157     def squash(self, total_net_input):
158         return 1 / (1 + math.exp(-total_net_input))
159
160
161     def calculate_pd_error_wrt_total_net_input(self, target_output):
162         return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();
163
164     # 每一个神经元的误差是由平方差公式计算的
165     def calculate_error(self, target_output):
166         return 0.5 * (target_output - self.output) ** 2
167
168
169     def calculate_pd_error_wrt_output(self, target_output):
170         return -(target_output - self.output)
171
172
173     def calculate_pd_total_net_input_wrt_input(self):
174         return self.output * (1 - self.output)
175
176
177     def calculate_pd_total_net_input_wrt_weight(self, index):
178         return self.inputs[index]
179
180
181 # 文中的例子:
182
183 nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35, output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
184 for i in range(10000):
185     nn.train([0.05, 0.1], [0.01, 0.09])
186     print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))
187
188
189 #另外一个例子,可以把上面的例子注释掉再运行一下:
190
191 # training_sets = [
192 #     [[0, 0], [0]],
193 #     [[0, 1], [1]],
194 #     [[1, 0], [1]],
195 #     [[1, 1], [0]]
196 # ]
197
198 # nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
199 # for i in range(10000):
200 #     training_inputs, training_outputs = random.choice(training_sets)
201 #     nn.train(training_inputs, training_outputs)
202 #     print(i, nn.calculate_total_error(training_sets))

  

  最后写到这里就结束了,现在还不会用latex编辑数学公式,本来都直接想写在草稿纸上然后扫描了传上来,但是觉得太影响阅读体验了。以后会用公式编辑器后再重把公式重新编辑一遍。稳重使用的是sigmoid激活函数,实际还有几种不同的激活函数可以选择,具体的可以参考文献[3],最后推荐一个在线演示神经网络变化的网址:http://www.emergentmind.com/neural-network,可以自己填输入输出,然后观看每一次迭代权值的变化,很好玩~如果有错误的或者不懂的欢迎留言:)

参考文献:

1.Poll的笔记:[Mechine Learning & Algorithm] 神经网络基础(http://www.cnblogs.com/maybe2030/p/5597716.html#3457159 )

2.Rachel_Zhang:http://blog.csdn.net/abcjennifer/article/details/7758797

3.http://www.cedar.buffalo.edu/%7Esrihari/CSE574/Chap5/Chap5.3-BackProp.pdf

4.https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

原文地址:https://www.cnblogs.com/xiongchang95/p/8526745.html

时间: 2024-10-28 05:22:32

大白话讲解BP算法(转载)的相关文章

大白话解析模拟退火算法(转载)

优化算法入门系列文章目录(更新中): 1. 模拟退火算法 2. 遗传算法 一. 爬山算法 ( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法.爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解. 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解.如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解. 图1    

今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)

转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法--反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Training 我们可

BP算法与公式推导

BP(backpropgationalgorithm ):后向传导算法,顾名思义就是从神经网络的输出(顶层)到输入(底层)进行求解.那么求解什么呢,求解的就是神经网络中的参数的导数,即参数梯度方向,从而就可以使用梯度下降等求解无约束问题(cost function的最值)的方法求得最终的参数.神经网络前向传播的过程比较简单,这里不做讲解(如果不了解,可以参看文献). 1.问题分析 1.1 Cost function 假设我们有一个固定样本集,它包含 m 个样例.我们可以用批量梯度下降法来求解神经

深度学习BP算法的推导(附加RNN,LSTM的推导说明)

注:1)这篇文章主要参考Alex Graves的博士论文<Supervised Sequence Labelling with Recurrent Neural Networks> 详细介绍其关于BP算法的推导过程. 2)论文没有提到过偏差的处理,不过如果能耐心推导出论文给出的公式,那么这将十分简单. 3)由于是结合语音训练的,最后是softmax出来是获得有限结果的概率值,然后做交叉熵作为目标函数,所以可能与其他的网络不一致,但是反馈的推导应该是一样的,除了输出层和最后一个隐层之间的个推导.

【原创】通俗易懂的讲解KMP算法及代码实现

一.本文简介 本文的目的是简单明了的讲解KMP算法的思想及实现过程. 网上的文章的确有些杂乱,有的过浅,有的太深,希望本文对初学者是非常友好的. 其实KMP算法有一些改良版,这些是在理解KMP核心思想后的优化. 所以本文重点是讲解KMP算法的核心,文章最后会有涉及一些改良过程. 二.KMP算法简介 KMP算法是字符串匹配算法的一种.它以三个发明者命名,Knuth-Morris-Pratt,起头的那个K就是著名科学家Donald Knuth. 三.KMP算法行走过程 首先我们先定义两个字符串作为示

BP算法

1986年Rumelhart和McCelland在<并行分布式处理>中提出了BP算法,即非线性连续变换函数的多层感知器网络误差反向传播算法. 该算法的思想是:学习过程分为信号的正向传播与误差的反向传播两个过程. 正向传播时,输入样本从输入层传入,经各隐含层逐层处理后传向输出层,若输出层的实际输出与期望输出不符,则转入误差反向传播阶段. 误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层的误差信号,此信号即作为修正各单元权值的依据. 上述两个过程

误差逆传播(error BackPropagation, BP)算法推导及向量化表示

1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes on Convolutional Neural Networks,结果刚看到第2章教材对BP算法的回顾就犯难了,不同于之前我学习的对每一个权值分别进行更新的公式推导,通过向量化表示它只用了5个式子就完成了对连接权值更新公式的描述,因此我第一眼看过去对每个向量的内部结构根本不清楚.原因还估计是自己当初

BP算法基本原理推导----《机器学习》笔记

前言 多层网络的训练需要一种强大的学习算法,其中BP(errorBackPropagation)算法就是成功的代表,它是迄今最成功的神经网络学习算法. 今天就来探讨下BP算法的原理以及公式推导吧. 神经网络 先来简单介绍一下神经网络,引入基本的计算公式,方便后面推导使用 图1 神经网络神经元模型 图1就是一个标准的M-P神经元模型.

stanford coursera 机器学习编程作业 exercise4--使用BP算法训练神经网络以识别阿拉伯数字(0-9)

在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出