c实现:骨牌覆盖问题·二

#include <stdio.h>

long MOD = 12357;

long N;

long a[5];

void solve()

{

int i = 0;

a[0] = 0;

a[1] = 2;

a[2] = 3;

for (i = 3; i <= N; i++)

{

if (i & 1)

{

a[i%5] = (2*a[(i-1+5)%5] + a[(i-2+5)%5]) % MOD;

}

else

{

a[i%5] = (3*a[(i-2+5)%5] + a[(i-3+5)%5]) % MOD;

}

}

if (N & 1)

{

printf("0\n");

}

else

{

printf("%ld\n",a[N%5]);

}

}

int main()

{

scanf("%ld",&N);

solve();

return 0;

}

时间: 2025-01-01 14:02:10

c实现:骨牌覆盖问题·二的相关文章

hihoCode #1151 : 骨牌覆盖问题&#183;二

#1151 : 骨牌覆盖问题·二 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.

题目1 : 骨牌覆盖问题&#183;二 (矩阵快速幂+分析状态的表示+题目的提示分析很好很经典)

题目1 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? 所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢? 首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: [week42_1.PNG] 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,00

[hihoCoder] 题目1 : 骨牌覆盖问题&#183;二

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 12

hiho42 : 骨牌覆盖问题&#183;二

描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 12357 样例输入 62247088 样例输出 4037 提示:3xN骨牌

骨牌覆盖问题&#183;二

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数,表示覆盖方案数 MOD 12357 样例输入 62

hihoCoder #1151 : 骨牌覆盖问题&#183;二 (矩阵快速幂,DP)

题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次,再来乘以初始矩阵init{0,0,0,0,0,0,0,1}后,变成矩阵ans{x,x,x,x,x,x,x,y},y就是答案了,而x不必管. 主要在这个矩阵的构造,假设棋盘是放竖直的(即n*3),那么考虑在第i行进行填放,需要考虑到第i-1行的所有可能的状态(注意i-2行必须是已经填满了,否则第i行无

hihocoder 1151 骨牌覆盖问题 二 (矩阵快速幂)

思路见hihocoder,用的kuangbin的矩阵快速幂,一次AC,6的一笔. #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> #include <string> #include <stack> #include <cmath> #include <queue> #include <set>

斐波那契数列 改1 3*N 骨牌覆盖 改1 hiho一下 第四十二周 递归不行 矩阵加速

题目1 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定,奇数长度一定是没有办法覆盖的:对于偶数长度,比如2,4,我们有下面几种覆盖方式: 提示:3xN骨牌覆盖 输入 第1行:1个整数N.表示棋盘长度.1≤N≤100,000,000 输出 第1行:1个整数

骨牌覆盖问题

骨牌覆盖问题: 用1*2骨牌完美覆盖n*m棋盘,求方案数 一.2*m 如果骨牌横着放,只能两个横着的骨牌摞在一起 如果竖着放,恰好占一列 所以dp[i]=dp[i-1]+dp[i-2] 即斐波那契数列 二.3*m 可以想到一个递推式:f[n]=a2*f[n-2]+a4*f[n-4]+a6*f[n-6]+……+an*f[0] ai(i是偶数)是未知的系数 即覆盖3*i棋盘且无法按某一列将3*i棋盘分成左右两部分的方案数 当i=2时,有3种方案 当i>=4(i为偶数)时,只有2种 因为考虑最左上角的