golang 原子计数,互斥锁,耗时

import "sync"
import "sync/atomic"
import "time"
import "runtime"

1.runtime.Gosched()表示让CPU把时间片让给别人,下次某个时候继续恢复执行该goroutine,自己一般是阻塞了,这是一个很高级的sleep,我们经常会遇到要sleep多久的问题,这里不用考虑了,别人完成后,自然会通知你。

2.var mutex sync.Mutex 定义一个互斥锁变量,使用atomic进行相关的原子操作,对于操作的变量需要读取访问时,Lock()这个mutex 来确保对该变量的独占访问,操作完成后 Unlock()这个mutex,为了确保这个 Go 协程不会在调度中死掉,我们在每次操作后明确的使用 runtime.Gosched()进行释放,这个释放一般是自动处理的。

3.记录运行时间 运行开始时使用t := time.Now()记录起始时间,程序结束时使用 time.Now().Sub(t)来获取总耗时(1.xxxs),一般是main()的代码起始中使用

时间: 2024-09-28 17:18:45

golang 原子计数,互斥锁,耗时的相关文章

原子属性与非原子属性,互斥锁与自旋锁介绍

nonatomic 非原子属性 非线程安全,适合内存小的移动设备(手机,平板...) atomic 原子属性(线程安全,但需要消耗大量资源)针对多线程设计的,为默认值,保证同一时间只有一个线程能够写入;本身就是一把自旋锁;单写多读,单个线程写入,多个线程读取 注意:当重写属性的get与set方法时需要在@implementation后添加:@synthesiae 属性名 = _属性名; 互斥锁与自旋锁对比 互斥锁:如果发现其他线程正在执行锁定代码,线程会进入休眠(就绪状态),等其他线程时间到打开

使用自旋锁和互斥锁实现的原子属性的性能对比

代码: #import "ViewController.h" extern uint64_t dispatch_benchmark(size_t count, void (^block)(void)); @interface ViewController () // 原子属性 - 互斥锁实现 @property (strong, nonatomic) NSObject *obj1; // 原子属性 - 自旋锁实现 @property (strong, atomic) NSObject

不得不知道的golang之sync.Mutex互斥锁源码分析

针对Golang 1.9的sync.Mutex进行分析,与Golang 1.10基本一样除了将panic改为了throw之外其他的都一样.源代码位置:sync\mutex.go.可以看到注释如下: Mutex can be in 2 modes of operations: normal and starvation. In normal mode waiters are queued in FIFO order, but a woken up waiter does not own the m

go语言--竞争、原子函数、互斥锁

一.go语言竞争状态.原子函数.互斥锁 下面代码例子是展示并发下公共数据操作,通过原子函数和互斥锁怎么解决. package main import ( "sync" "runtime" "fmt" "sync/atomic" ) var( // counter是所有goroutine都要增加的变量 counter int64 // wg用来等待程序的结束 wg sync.WaitGroup // mutex 用来定义一段代码

Linux 同步方法剖析--内核原子,自旋锁和互斥锁

在学习 Linux® 的过程中,您也许接触过并发(concurrency).临界段(critical section)和锁定,但是如何在内核中使用这些概念呢?本文讨论了 2.6 版内核中可用的锁定机制,包括原子运算符(atomic operator).自旋锁(spinlock).读/写锁(reader/writer lock)和内核信号量(kernel semaphore). 本文还探讨了每种机制最适合应用到哪些地方,以构建安全高效的内核代码. 本文讨论了 Linux 内核中可用的大量同步或锁定

线程同步(互斥锁与信号量的作用与区别)

“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在semtake的时候,就阻塞在 哪里).而互斥锁是用在多线程多任务互斥的,一个线程占用了某一个资源,那么别的线程就无法访问,直到这个线程unlock,其他的线程才开始可以利用这 个资源.比如对全局变量的访问,有时要加锁,操作完了,在解锁.有的时候锁和信号量会同时使用的” 也就是说,信号量不一定是锁定某一个资源,而是流程上的概念,比如:有A,B两个线程,B线程要等A线程完成某一任务以后

iOS - 互斥锁&&自旋锁 多线程安全隐患(转载)

一.多线程安全隐患 资源共享  一块资源可能会被多个线程共享,也就是多个线程可能会访问到一块资源 比如多个线程访问同一个对象,同一个变量,同一个文件. 当多线程访问同一块资源的时候,很容易引发数据错乱和数据安全问题二.原子和非原子属性 1>OC 在定义属性的时候有nonatomic和atomic两种选择      * atomic:原子属性,为 setter 方法加锁      * nonatomic:非原子属性,不会为 setter 方法加锁        普通情况下都是在主线程做操作,所以一

互斥锁、信号量、条件变量的区别

来自:http://blog.chinaunix.net/space.php?uid=23061624&do=blog&cuid=2127853 信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在semtake的时候,就阻塞在哪里).而互斥锁是用在多线程多任务互斥的,一个线程占用了某一个资源,那么别的线程就无法访问,直到这个线程unlock,其他的线程才开始可以利用这个资源.比如对全局变量的访问,有时要加锁,操作完了,在解锁.有

Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等(转)

Java 中15种锁的介绍 在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁 / 非公平锁 可重入锁 / 不可重入锁 独享锁 / 共享锁 互斥锁 / 读写锁 乐观锁 / 悲观锁 分段锁 偏向锁 / 轻量级锁 / 重量级锁 自旋锁 上面是很多锁的名词,这些分类并不是全是指锁的状态,有的指锁的特性,有的指锁的设计,下面总结的内容是对每个锁的名词进行一定的解释. 公平锁 / 非公平锁 公平锁 公平锁是指多个线程按照申请锁的顺序来获取锁. 非公