为什么深度学习有效?(why deep learning works)

总述:这篇文章是一次听讲座,吴大鹏教授做的why deep learning works,佛罗里达大学教授,很有名。自己对该讲座做个理解。

一、深度学习的背景相关介绍

  1、machine learning:一般的ml只针对线性分类,即只是一个linear methods。

  2、neural networks:第二代神经网络,是对ml的一个发展,更好地非线性分类。通过BP算法,调参数,以误差和真实值为导向,修改一系列参数,让误差趋近于0,逼近真实值。但是一般的神经网络只能到3-5层,层数多了就不行了,高层的误差就不能传递到低层去了,在中间的时候,误差被消耗。(the gradient becomes smaller and smaller in lower layers in back propagation)

  3、kernel method:第三代就是核函数,这里最出名的就是高斯核函数了,对第一代的Ml算法,都加上核函数,效果要好的多。

  3.5、deep learning:dp只能是第3.5代,还不能算成第四代,因为对里面的数学原理现在还没发强有力的解释。

    a)dl是基于多层的神经网络

    b) 是依赖kernel 和线性化的

    c)更高层次的抽像能够帮助抓住相关和不变的特征。capture relevant and invariant

二、why it works?

  

这涉及到微分几何里面的流行曲面。以人脸识别为例,一个人的各种表情,比如哭,笑,这些照片在多维空间里就组合成一个流行曲面,这是距离就不能用欧几何来算了。比如,从成都到北京,欧几何就是两点之间的距离,穿过地球,但是这时的距离应该是沿着地球表面经过的距离。

  

  

  

一系列的数学公式表示没看懂,大致的意思就是深度学习会将流行曲面的曲率降低,这样就便于分类。一个形象的例子就是卷心菜被展平,这样就好分类了。下图是一个结果图,用实验来证明曲率降低:

  

深度学习在训练的时候,先让数据自己学习一会儿,自己学习就会抓住一些不变量和数据本质特征,然后监督学习在高层发挥其效果。

  

  

先用deeping learning 展平,在用pca线性分类器

  

  

时间: 2024-10-13 00:06:44

为什么深度学习有效?(why deep learning works)的相关文章

深度学习阅读列表 Deep Learning Reading List

Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, In preparation. Review Papers Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville

Why Deep Learning Works – Key Insights and Saddle Points

Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical motivations for deep learning, including distributed representation, deep architecture, and the easily escapable saddle point. By Matthew Mayo. This post

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

(转)大牛的《深度学习》笔记,60分钟带你学会Deep Learning。

大牛的<深度学习>笔记,60分钟带你学会Deep Learning. 2016-08-01 Zouxy 阅面科技 上期:<从特征描述到深度学习:计算机视觉发展20年> 回复“01”回顾全文   本期:大牛的<深度学习>笔记,60分钟带你学会Deep Learning. 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别.图像分类.文本

Deep Learning五:PCA and Whitening_Exercise(斯坦福大学UFLDL深度学习教程)

前言 本文是基于Exercise:PCA and Whitening的练习. 理论知识见:UFLDL教程. 实验内容:从10张512*512自然图像中随机选取10000个12*12的图像块(patch),然后对这些patch进行99%的方差保留的PCA计算,最后对这些patch做PCA Whitening和ZCA Whitening,并进行比较. 实验步骤及结果 1.加载图像数据,得到10000个图像块为原始数据x,它是144*10000的矩阵,随机显示200个图像块,其结果如下: 2.把它的每

神经网络与深度学习(1):神经元和神经网络

本文总结自<Neural Networks and Deep Learning>第1章的部分内容. 目录 感知器 S型神经元 神经网络的架构 用神经网络识别手写数字 迈向深度学习 感知器(Perceptrons) 1. 基本原理 感知器是一种人工神经元. 一个感知器接受几个二进制输入:x1,x2,...,并产一个二进制输出: 数学模型如下: 可以将感知器看作依据权重来作出决定的设备. 2. 感知器和与非门 可以通过上述简单的权重和偏置实现一个与非门. 输入00, (−2)∗0+(−2)∗0+3

[转]深度学习之浅见

通常来说,大家认为深度学习的观点是Geoffrey Hinton在2006年提出的.这一算法提出之后,得到了迅速的发展.关于深度学习,zouxy09的专栏中有详细的介绍,Free Mind 的博文也很值得一读.本博文是我对深度学习的一点看法,主要内容在第4.5部分,不当之处还请指教. 1.深度学习 深度学习,即Deep Learning,是一种学习算法(Learning algorithm).学习算法这个很好理解,那么Deep指的是什么呢?这里的Deep是针对算法的结构而言的. 譬如,SVMs及

Github上Stars最多的53个深度学习项目,TensorFlow遥遥领先

原文:https://github.com/aymericdamien/TopDeepLearning 项目名称 Stars 项目介绍 TensorFlow 29622 使用数据流图计算可扩展机器学习问题. Caffe 11799 Caffe是一个高效的开源深度学习框架. Neural Style 10148 Torch实现的神经网络算法. Deep Dream 9042 Deep Dream,一款图像识别工具. Keras 7502 一款Python实现的深度学习库,包括卷积神经网络.递归神经

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记

Deep Learning Face Representation from Predicting 10,000 Classes论文笔记(2015.03.24) 一.基本思路 作者利用卷积神经网络(Convolutional Neural Network,CNN)对大量样本进行训练,提取Deep hidden identity feature(DeepID)特征,然后利用这些特征进行人脸验证(Face Verification).在LFW(Labeled Faces in the Wild)库上