【机器学习】Octave 实现逻辑回归 Logistic Regression

34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
95.86155507093572,38.22527805795094,0
75.01365838958247,30.60326323428011,0
82.30705337399482,76.48196330235604,1
69.36458875970939,97.71869196188608,1
39.53833914367223,76.03681085115882,0
53.9710521485623,89.20735013750205,1
69.07014406283025,52.74046973016765,1
67.94685547711617,46.67857410673128,0
70.66150955499435,92.92713789364831,1
76.97878372747498,47.57596364975532,1
67.37202754570876,42.83843832029179,0
89.67677575072079,65.79936592745237,1
50.534788289883,48.85581152764205,0
34.21206097786789,44.20952859866288,0
77.9240914545704,68.9723599933059,1
62.27101367004632,69.95445795447587,1
80.1901807509566,44.82162893218353,1
93.114388797442,38.80067033713209,0
61.83020602312595,50.25610789244621,0
38.78580379679423,64.99568095539578,0
61.379289447425,72.80788731317097,1
85.40451939411645,57.05198397627122,1
52.10797973193984,63.12762376881715,0
52.04540476831827,69.43286012045222,1
40.23689373545111,71.16774802184875,0
54.63510555424817,52.21388588061123,0
33.91550010906887,98.86943574220611,0
64.17698887494485,80.90806058670817,1
74.78925295941542,41.57341522824434,0
34.1836400264419,75.2377203360134,0
83.90239366249155,56.30804621605327,1
51.54772026906181,46.85629026349976,0
94.44336776917852,65.56892160559052,1
82.36875375713919,40.61825515970618,0
51.04775177128865,45.82270145776001,0
62.22267576120188,52.06099194836679,0
77.19303492601364,70.45820000180959,1
97.77159928000232,86.7278223300282,1
62.07306379667647,96.76882412413983,1
91.56497449807442,88.69629254546599,1
79.94481794066932,74.16311935043758,1
99.2725269292572,60.99903099844988,1
90.54671411399852,43.39060180650027,1
34.52451385320009,60.39634245837173,0
50.2864961189907,49.80453881323059,0
49.58667721632031,59.80895099453265,0
97.64563396007767,68.86157272420604,1
32.57720016809309,95.59854761387875,0
74.24869136721598,69.82457122657193,1
71.79646205863379,78.45356224515052,1
75.3956114656803,85.75993667331619,1
35.28611281526193,47.02051394723416,0
56.25381749711624,39.26147251058019,0
30.05882244669796,49.59297386723685,0
44.66826172480893,66.45008614558913,0
66.56089447242954,41.09209807936973,0
40.45755098375164,97.53518548909936,1
49.07256321908844,51.88321182073966,0
80.27957401466998,92.11606081344084,1
66.74671856944039,60.99139402740988,1
32.72283304060323,43.30717306430063,0
64.0393204150601,78.03168802018232,1
72.34649422579923,96.22759296761404,1
60.45788573918959,73.09499809758037,1
58.84095621726802,75.85844831279042,1
99.82785779692128,72.36925193383885,1
47.26426910848174,88.47586499559782,1
50.45815980285988,75.80985952982456,1
60.45555629271532,42.50840943572217,0
82.22666157785568,42.71987853716458,0
88.9138964166533,69.80378889835472,1
94.83450672430196,45.69430680250754,1
67.31925746917527,66.58935317747915,1
57.23870631569862,59.51428198012956,1
80.36675600171273,90.96014789746954,1
68.46852178591112,85.59430710452014,1
42.0754545384731,78.84478600148043,0
75.47770200533905,90.42453899753964,1
78.63542434898018,96.64742716885644,1
52.34800398794107,60.76950525602592,0
94.09433112516793,77.15910509073893,1
90.44855097096364,87.50879176484702,1
55.48216114069585,35.57070347228866,0
74.49269241843041,84.84513684930135,1
89.84580670720979,45.35828361091658,1
83.48916274498238,48.38028579728175,1
42.2617008099817,87.10385094025457,1
99.31500880510394,68.77540947206617,1
55.34001756003703,64.9319380069486,1
74.77589300092767,89.52981289513276,1

ex2data1.txt

0.051267,0.69956,1
-0.092742,0.68494,1
-0.21371,0.69225,1
-0.375,0.50219,1
-0.51325,0.46564,1
-0.52477,0.2098,1
-0.39804,0.034357,1
-0.30588,-0.19225,1
0.016705,-0.40424,1
0.13191,-0.51389,1
0.38537,-0.56506,1
0.52938,-0.5212,1
0.63882,-0.24342,1
0.73675,-0.18494,1
0.54666,0.48757,1
0.322,0.5826,1
0.16647,0.53874,1
-0.046659,0.81652,1
-0.17339,0.69956,1
-0.47869,0.63377,1
-0.60541,0.59722,1
-0.62846,0.33406,1
-0.59389,0.005117,1
-0.42108,-0.27266,1
-0.11578,-0.39693,1
0.20104,-0.60161,1
0.46601,-0.53582,1
0.67339,-0.53582,1
-0.13882,0.54605,1
-0.29435,0.77997,1
-0.26555,0.96272,1
-0.16187,0.8019,1
-0.17339,0.64839,1
-0.28283,0.47295,1
-0.36348,0.31213,1
-0.30012,0.027047,1
-0.23675,-0.21418,1
-0.06394,-0.18494,1
0.062788,-0.16301,1
0.22984,-0.41155,1
0.2932,-0.2288,1
0.48329,-0.18494,1
0.64459,-0.14108,1
0.46025,0.012427,1
0.6273,0.15863,1
0.57546,0.26827,1
0.72523,0.44371,1
0.22408,0.52412,1
0.44297,0.67032,1
0.322,0.69225,1
0.13767,0.57529,1
-0.0063364,0.39985,1
-0.092742,0.55336,1
-0.20795,0.35599,1
-0.20795,0.17325,1
-0.43836,0.21711,1
-0.21947,-0.016813,1
-0.13882,-0.27266,1
0.18376,0.93348,0
0.22408,0.77997,0
0.29896,0.61915,0
0.50634,0.75804,0
0.61578,0.7288,0
0.60426,0.59722,0
0.76555,0.50219,0
0.92684,0.3633,0
0.82316,0.27558,0
0.96141,0.085526,0
0.93836,0.012427,0
0.86348,-0.082602,0
0.89804,-0.20687,0
0.85196,-0.36769,0
0.82892,-0.5212,0
0.79435,-0.55775,0
0.59274,-0.7405,0
0.51786,-0.5943,0
0.46601,-0.41886,0
0.35081,-0.57968,0
0.28744,-0.76974,0
0.085829,-0.75512,0
0.14919,-0.57968,0
-0.13306,-0.4481,0
-0.40956,-0.41155,0
-0.39228,-0.25804,0
-0.74366,-0.25804,0
-0.69758,0.041667,0
-0.75518,0.2902,0
-0.69758,0.68494,0
-0.4038,0.70687,0
-0.38076,0.91886,0
-0.50749,0.90424,0
-0.54781,0.70687,0
0.10311,0.77997,0
0.057028,0.91886,0
-0.10426,0.99196,0
-0.081221,1.1089,0
0.28744,1.087,0
0.39689,0.82383,0
0.63882,0.88962,0
0.82316,0.66301,0
0.67339,0.64108,0
1.0709,0.10015,0
-0.046659,-0.57968,0
-0.23675,-0.63816,0
-0.15035,-0.36769,0
-0.49021,-0.3019,0
-0.46717,-0.13377,0
-0.28859,-0.060673,0
-0.61118,-0.067982,0
-0.66302,-0.21418,0
-0.59965,-0.41886,0
-0.72638,-0.082602,0
-0.83007,0.31213,0
-0.72062,0.53874,0
-0.59389,0.49488,0
-0.48445,0.99927,0
-0.0063364,0.99927,0
0.63265,-0.030612,0

ex2data2.txt

本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学。

根据题意,我们不难分辨出这是一种二分类的逻辑回归,输入x有两种(科目1与科目2),输出有两种(能进入本大学与不能进入本大学)。输入测试样例以已经本文最前面贴出分别有两组数据。

我们在进行逻辑回归之前,通常想把数据数据更为直观的显示出来,那么我们根据输入样例绘制图像。

function plotData(X, y)
%PLOTDATA Plots the data points X and y into a new figure
%   PLOTDATA(x,y) plots the data points with + for the positive examples
%   and o for the negative examples. X is assumed to be a Mx2 matrix.

% Create New Figure
figure; hold on;

% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
%               2D plot, using the option ‘k+‘ for the positive
%               examples and ‘ko‘ for the negative examples.

% Find Indices of Positive and Negative Examples
pos = find(y == 1); neg = find(y == 0);
% Plot Examples
plot(X(pos, 1), X(pos, 2), ‘k+‘,‘LineWidth‘, 2, ‘MarkerSize‘, 7);
plot(X(neg, 1), X(neg, 2), ‘ko‘, ‘MarkerFaceColor‘, ‘y‘,‘MarkerSize‘, 7);

% =========================================================================

hold off;

end

  如上代码所展示的是绘图函数,我们可以通过它把数据绘制出来

执行如下代码,绘制图像

clear ; close all; clc

%% Load Data
%  The first two columns contains the exam scores and the third column
%  contains the label.

data = load(‘ex2data1.txt‘);
X = data(:, [1, 2]); y = data(:, 3);   

%% ==================== Part 1: Plotting ====================
%  We start the exercise by first plotting the data to understand the
%  the problem we are working with.

fprintf([‘Plotting data with + indicating (y = 1) examples and o ‘ ...
         ‘indicating (y = 0) examples.\n‘]);

plotData(X, y);

% Put some labels
hold on;
% Labels and Legend
xlabel(‘Exam 1 score‘)
ylabel(‘Exam 2 score‘)

% Specified in plot order
legend(‘Admitted‘, ‘Not admitted‘)
hold off;

fprintf(‘\nProgram paused. Press enter to continue.\n‘);
pause;

  绘制结果入下图所示:

图中用+与O分别表示y = 1 与y = 0的两种结果。

在接触到真正的代价函数之前,我们通常假设函数是hΘ(x)= g(ΘTx)

是一S形函数,他可以很好的将0与1区分开。

S形函数的实现:

function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
%   J = SIGMOID(z) computes the sigmoid of z.

% You need to return the following variables correctly
g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
%               vector or scalar).
g = 1 ./ ( 1 + exp(-z) ) ;
% =============================================================

end

  

现在我们可以对逻辑函数进行梯度下降,回归函数中的代价函数J(Θ)

代价函数代码实现为

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
%   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
%   parameter for logistic regression and the gradient of the cost
%   w.r.t. to the parameters.

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%

J= -1 * sum( y .* log( sigmoid(X*theta) ) + (1 - y ) .* log( (1 - sigmoid(X*theta)) ) ) / m ;

grad = ( X‘ * (sigmoid(X*theta) - y ) )/ m ;

% =============================================================

end
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
%   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta

theta_1=[0;theta(2:end)];
J= -1 * sum( y .* log( sigmoid(X*theta) ) + (1 - y ) .* log( (1 - sigmoid(X*theta)) ) ) / m  + lambda/(2*m) * theta_1‘ * theta_1 ;
grad = ( X‘ * (sigmoid(X*theta) - y ) )/ m + lambda/m * theta_1 ;

% =============================================================

end

  

 

预测函数:

function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
%   p = PREDICT(theta, X) computes the predictions for X using a
%   threshold at 0.5 (i.e., if sigmoid(theta‘*x) >= 0.5, predict 1)

m = size(X, 1); % Number of training examples

% You need to return the following variables correctly
p = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned logistic regression parameters.
%               You should set p to a vector of 0‘s and 1‘s
%

k = find(sigmoid( X * theta) >= 0.5 );
p(k)= 1;

% p(sigmoid( X * theta) >= 0.5) = 1;   % it‘s a more compat way.

% =========================================================================

end

  

 

现在我们实现代价函数和他的梯度下降,并拟合出直线

%% ============ Part 2: Compute Cost and Gradient ============
%  In this part of the exercise, you will implement the cost and gradient
%  for logistic regression. You neeed to complete the code in
%  costFunction.m

%  Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X);

% Add intercept term to x and X_test
X = [ones(m, 1) X];

% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);

% Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y);

fprintf(‘Cost at initial theta (zeros): %f\n‘, cost);
fprintf(‘Gradient at initial theta (zeros): \n‘);
fprintf(‘ %f \n‘, grad);

fprintf(‘\nProgram paused. Press enter to continue.\n‘);
pause;

  

%% ============= Part 3: Optimizing using fminunc  =============
%  In this exercise, you will use a built-in function (fminunc) to find the
%  optimal parameters theta.

%  Set options for fminunc
options = optimset(‘GradObj‘, ‘on‘, ‘MaxIter‘, 400);

%  Run fminunc to obtain the optimal theta
%  This function will return theta and the cost
[theta, cost] = ...
	fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);

% Print theta to screen
fprintf(‘Cost at theta found by fminunc: %f\n‘, cost);
fprintf(‘theta: \n‘);
fprintf(‘ %f \n‘, theta);

% Plot Boundary
plotDecisionBoundary(theta, X, y);

% Put some labels
hold on;
% Labels and Legend
xlabel(‘Exam 1 score‘)
ylabel(‘Exam 2 score‘)

% Specified in plot order
legend(‘Admitted‘, ‘Not admitted‘)
hold off;

fprintf(‘\nProgram paused. Press enter to continue.\n‘);
pause;

%% ============== Part 4: Predict and Accuracies ==============
%  After learning the parameters, you‘ll like to use it to predict the outcomes
%  on unseen data. In this part, you will use the logistic regression model
%  to predict the probability that a student with score 45 on exam 1 and
%  score 85 on exam 2 will be admitted.
%
%  Furthermore, you will compute the training and test set accuracies of
%  our model.
%
%  Your task is to complete the code in predict.m

%  Predict probability for a student with score 45 on exam 1
%  and score 85 on exam 2 

prob = sigmoid([1 45 85] * theta);
fprintf([‘For a student with scores 45 and 85, we predict an admission ‘ ...
         ‘probability of %f\n\n‘], prob);

% Compute accuracy on our training set
p = predict(theta, X);

fprintf(‘Train Accuracy: %f\n‘, mean(double(p == y)) * 100);

fprintf(‘\nProgram paused. Press enter to continue.\n‘);
pause;

  

实例2,对非线性函数进行逻辑回归,

实现步骤如下:

%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the second part
%  of the exercise which covers regularization with logistic regression.
%
%  You will need to complete the following functions in this exericse:
%
%     sigmoid.m
%     costFunction.m
%     predict.m
%     costFunctionReg.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%

%% Initialization
clear ; close all; clc

%% Load Data
%  The first two columns contains the X values and the third column
%  contains the label (y).

data = load(‘ex2data2.txt‘);
X = data(:, [1, 2]); y = data(:, 3);

plotData(X, y);

% Put some labels
hold on;

% Labels and Legend
xlabel(‘Microchip Test 1‘)
ylabel(‘Microchip Test 2‘)

% Specified in plot order
legend(‘y = 1‘, ‘y = 0‘)
hold off;

%% =========== Part 1: Regularized Logistic Regression ============
%  In this part, you are given a dataset with data points that are not
%  linearly separable. However, you would still like to use logistic
%  regression to classify the data points.
%
%  To do so, you introduce more features to use -- in particular, you add
%  polynomial features to our data matrix (similar to polynomial
%  regression).
%

% Add Polynomial Features

% Note that mapFeature also adds a column of ones for us, so the intercept
% term is handled
X = mapFeature(X(:,1), X(:,2));

% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);

% Set regularization parameter lambda to 1
lambda = 1;

% Compute and display initial cost and gradient for regularized logistic
% regression
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);

fprintf(‘Cost at initial theta (zeros): %f\n‘, cost);

fprintf(‘\nProgram paused. Press enter to continue.\n‘);
pause;

%% ============= Part 2: Regularization and Accuracies =============
%  Optional Exercise:
%  In this part, you will get to try different values of lambda and
%  see how regularization affects the decision coundart
%
%  Try the following values of lambda (0, 1, 10, 100).
%
%  How does the decision boundary change when you vary lambda? How does
%  the training set accuracy vary?
%

% Initialize fitting parameters
initial_theta = zeros(size(X, 2), 1);

% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1;

% Set Options
options = optimset(‘GradObj‘, ‘on‘, ‘MaxIter‘, 400);

% Optimize
[theta, J, exit_flag] = ...
	fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);

% Plot Boundary
plotDecisionBoundary(theta, X, y);
hold on;
title(sprintf(‘lambda = %g‘, lambda))

% Labels and Legend
xlabel(‘Microchip Test 1‘)
ylabel(‘Microchip Test 2‘)

legend(‘y = 1‘, ‘y = 0‘, ‘Decision boundary‘)
hold off;

% Compute accuracy on our training set
p = predict(theta, X);

fprintf(‘Train Accuracy: %f\n‘, mean(double(p == y)) * 100);

  样本:

逻辑回归:

预测结果:为83.050847

时间: 2024-10-23 03:55:23

【机器学习】Octave 实现逻辑回归 Logistic Regression的相关文章

机器学习总结之逻辑回归Logistic Regression

机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问题:预测一个连续的输出. 分类问题:离散输出,比如二分类问题输出0或1. 逻辑回归常用于垃圾邮件分类,天气预测.疾病判断和广告投放. 一.假设函数 因为是一个分类问题,所以我们希望有一个假设函数,使得: 而sigmoid 函数可以很好的满足这个性质: 故假设函数: 其实逻辑回归为什么要用sigmoi

机器学习 (三) 逻辑回归 Logistic Regression

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交

机器学习笔记04:逻辑回归(Logistic regression)、分类(Classification)

之前我们已经大概学习了用线性回归(Linear Regression)来解决一些预测问题,详见: 1.<机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)> 2.<机器学习笔记02:多元线性回归.梯度下降和Normal equation> 3.<机器学习笔记03:Normal equation及其与梯度下降的比较> 说明:本文章所有图片均属于Stanford机器学课程,转载请注明出处 面对一些类似回归问题,我们可

机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识,线性回归因为它的简单,易用,且可以求出闭合解,被广泛地运用在各种机器学习应用中.事实上,除了单独使用,线性回归也是很多其他算法的组成部分.线性回归的缺点也是很明显的,因为线性回归是输入到输出的线性变换,拟合能力有限:另外,线性回归的目标值可以是(?∞,+∞),而有的时候,目标值的范围是[0,1](可以表示概率值),那么就不方便了. 逻辑回归可以说是最为常用的机器学习算法之一,最经典的场景就

逻辑回归(logistic regression)

logistic regression可以解决分类问题,即输出的结果只有0和1两种,比如,对于邮件的判断只有是或者否.这种分类问题使用传统的线性回归并不能很好的解决. 一个小例子 例如,当我们根据肿瘤的大小判断一个肿瘤是不是良性的时候,输出结果只有是或者否,用1和0表示,给定的样本点,并且我们使用传统的线性回归问题解决拟合的函数图像如下: 图像中我们可以根据拟合曲线,当输出值大于0.5(根据图像判断的值)的时候,确定输出的为恶性(即为1):当输出值小于0.5(根据图像判断的值)的时候,确定输出的

Coursera机器学习-第三周-逻辑回归Logistic Regression

Classification and Representation 1. Classification Linear Regression (线性回归)考虑的是连续值([0,1]之间的数)的问题,而Logistic Regression(逻辑回归)考虑的是离散值(例如只能取0或1而不能取0到1之间的数)的问题.举个例子,你需要根据以往季度的电力数据,预测下一季度的电力数据,这个时候需要使用的是线性回归,因为这个值是连续的,而不是离散的.而当你需要判断这个人抽烟还是不抽烟的问题时,就需要使用逻辑回

机器学习之逻辑回归(Logistic Regression)

"""逻辑回归中的Sigmoid函数"""   import numpy as np   import matplotlib.pyplot as plt     def sigmoid(t):   return 1/(1+np.exp(-t))     x=np.linspace(-10,10,500)   y=sigmoid(x)     plt.plot(x,y)   plt.show() 结果: 逻辑回归损失函数的梯度:   逻辑回归算法:

逻辑回归 logistic regression(1)逻辑回归的求解和概率解释

本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑回归 逻辑回归是一种监督学习的分类算法,相比较之前的线性回归算法,差别在于它是一个分类算法,这也意味着y不再是一个连续的值,而是{0,1}的离散值(两类问题的情况下). 当然这依然是一个判别学习算法,所谓判别学习算法,就是我们直接去预测后验 ,或者说直接预测判别函数的算法.当然相对应的生成学习算法,

sklearn逻辑回归(Logistic Regression,LR)调参指南

python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn逻辑回归官网调参指南 https://scikit-learn.org/stable/modules/generated/sklearn.linear