A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

一种在无GPS环境中设计的面向低价微型飞行器的多传感器同步定位成图系统

学术编辑:Gonzalo Pajares Martinsanz
收到:2017年1月25日;接受:2017年4月5日;发布时间:4月8日201

Abstract: One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory con?guration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory con?guration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF.When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control.

简介:空中机器人在无GPS信号的环境中的一个主要挑战是只使用可用的机载传感器的位置估计。本文提出了一种同时建图和定位(SLAM)系统,它可以远程计算不同低价格商用航空平台的位姿和环境地图,远程计算的原因是机载计算能力通常是受限的。该系统适合于空中机器人的传感器配置,通过融合不同的先进的SLAM方法,包括视觉SLAM,激光雷达SLAM和/或者使用EKF的惯性测量。要做到这一点,一种最小的机载传感配置是可以做到的,包括一个单目相机、一个惯性测量单位(IMU)和一个高度计。

时间: 2024-12-16 23:04:11

A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments的相关文章

泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping

张宁  GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mappinghttps://arxiv.org/abs/1902.02086 Punarjay Chakravarty, Praveen Narayanan and Tom Roussel Abstract—We present a Deep Learning based system for the twin tasks of loca

On Data Sharing Strategy for Decentralized Collaborative Visual-Inertial Simultaneous Localization and Mapping

张宁 On Data Sharing Strategy for Decentralized Collaborative Visual-Inertial Simultaneous Localization and Mapping Rodolphe Dubois, Alexandre Eudes, Vincent Fr´emont链接:https://pan.baidu.com/s/1DGEZtJ7H7eITfyyns7h06A 提取码:zvcu Abstract—This article intr

Visual simultaneous localization and mapping: a survey 论文解析(全)

当激光或声纳等距离传感器被用来构建小的静态环境的二维地图时,SLAM的问题被认为是解决的.然而,对于动态,复杂和大规模的环境,使用视觉作为唯一的外部传感器,SLAM是一个活跃的研究领域. 第一部分是简介 移动机器人的自主导航问题分为三个主要方面:定位,建图和路径规划. 定位包括以确切的方式确定机器人在环境中的当前姿态. 建图将环境的部分观测结果整合到一个统一的模型中. 路径规划确定了地图中通过环境进行导航的最佳路线. 最初,定位和建图是独立研究的,后来认识到它们是依赖的.在外部环境中,在动态环境

【 论文学习记录】A flexible and scalable slam system with full 3d motion estimation 一种灵活可扩展带有3D运动估计的slam系统

A flexible and scalable slam system with full 3d motion estimation   论文学习记录 这篇论文系统框架,栅格多阈值,更新同步与伪数据,扫描匹配起始点,协方差交叉融合的思想还是值得借鉴的. 摘要 关注于搜救机器人建图定位与导航的框架性文章. 低计算资源的在线快速获取栅格地图: 结合鲁棒的激光扫描匹配方法和惯性传感器姿态估计系统. 快速地图梯度近似与多分辨率(类似图像金字塔)栅格地图,精确而不需要闭环检测. 介绍 2D slam 子系

论文:ORB-SLAM:a Versatile and accurate Monocular SLAM System

前言 一.介绍 PTAM(parallel tracking and Mapping)系统局限于小尺度场景中,提供简单但是有效的关键帧选择.特征匹配.三角化.重定位技术,但是具有以下缺点:(1)缺少闭环优化:(2)重定位的不稳定性:(3)需要人工初始化地图.ORB-SLAM在PTAM系统基础上构建, ORB-SLAM系统具有以下优点: (1)在追踪.建图.重定位和回环过程中采用同一种特征点-ORB,使得该系统在没有GPU加速下实时运行,并且对光照和视角变化具有良好的鲁棒性. (2)在追踪和建图过

SLAM论文阅读笔记

[1]陈卫东, 张飞. 移动机器人的同步自定位与地图创建研究进展[J]. 控制理论与应用, 2005, 22(3):455-460. [2]Cadena C, Carlone L, Carrillo H, et al. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age[J]. IEEE Transactions on Robotics, 2016

slam视频教程

链接: http://pan.baidu.com/s/1dDk0P0l 密码: vp3v 声明:翻墙从国外下载下来,现共享出来供国内相同兴趣爱好者学习,都是公开的,转存共享应该不会侵权吧. Robot Mapping - WS 2013/14 - Arbeitsgruppe: Auton... file:///home/agv/Desktop/slam_tutorial/home_html/Ro... Autonome Intelligente Systeme Autonome Intellig

Google's Open Source SLAM Library ---- Cartographer

What is Cartographer? Google announce the open source release of Cartographer, a real-time simultaneous localization and mapping (SLAM) library in 2D and 3D with ROS support, in October 2016. As Robotics Trends said, "Google wants to democratize the

Open Source Projects Released By Google

Open Source Projects Released By Google Google has released over 20 million lines of code and over 900 projects. Many engineers work on open source projects full time, and even more use their 20% time to create new projects or contribute to their fav