【bzoj2770】YY的Treap 权值线段树

题目描述

志向远大的YY小朋友在学完快速排序之后决定学习平衡树,左思右想再加上SY的教唆,YY决定学习Treap。友爱教教父SY如砍瓜切菜般教会了YY小朋友Treap(一种平衡树,通过对每个节点随机分配一个priority,同时保证这棵平衡树关于priority是一个小根堆以保证效率)。这时候不怎么友爱的510跑了出来,他问了YY小朋友一个极不和谐的问题:怎么求Treap中两个点之间的路径长度。YY秒了之后决定把这个问题交给你来做,但只要求出树中两点的LCA。

输入

第一行两个整数n,m

第二行n个整数表示每个元素的key

第三行n个整数表示每个元素的priority

接下m行,每行一条命令

I A B,插入一个元素,key为A, priority为B

D A,删除一个元素,key为A

Q A B,询问key分别为A和B的LCA的key

输出

对于每个Q输出一个整数。

样例输入

2 1
1 2
4 5
Q 1 2

样例输出

1



题解

权值线段树

一个小结论:不妨设$a\le b$,则Treap中权值为$a$、$b$两点的LCA为权值在$[a,b]$之间,优先级最小的点。

证明:

1.LCA的权值在$[a,b]$之间:考虑从$a$、$b$找到LCA的最后一步:一定是$a$在LCA的非右子树,$b$在LCA的非左子树。否则$a$、$b$在同子树内则LCA可以为更优的该儿子节点。

2.权值在$[a,b]$之间的节点一定都在LCA的子树内:如果不在LCA的子树内,那么节点如果在LCA右侧则一定大于$b$,或在LCA左侧则一定小于$a$。

3.LCA的子树中所有节点的优先级都小于等于LCA:证明显然。

4.LCA一定在LCA的子树内:证明显然。

因此由1、2、3、4得证。

于是只需要对每个数的key维护权值线段树,维护权值在某区间内的数的优先级最小值及其位置。查询时直接区间查询即可。

为了避免一些细节问题(比如两个int加起来爆int之类的),代码中使用了离线离散化。

时间复杂度$O(n\log n)$。

#include <cstdio>
#include <utility>
#include <algorithm>
#define N 100010
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
#define id(x) lower_bound(v + 1 , v + tot + 1 , x) - v
#define inf 0x7fffffff
using namespace std;
typedef pair<int , int> pr;
int key[N] , pri[N] , opt[N * 3] , qx[N * 3] , qy[N * 3] , v[N << 2] , tot;
pr mn[N << 4];
char str[5];
void build(int l , int r , int x)
{
	mn[x] = pr(inf , inf);
	if(l == r) return;
	int mid = (l + r) >> 1;
	build(lson) , build(rson);
}
void insert(int p , int v , int l , int r , int x)
{
	if(l == r)
	{
		mn[x] = pr(v , p);
		return;
	}
	int mid = (l + r) >> 1;
	if(p <= mid) insert(p , v , lson);
	else insert(p , v , rson);
	mn[x] = min(mn[x << 1] , mn[x << 1 | 1]);
}
void erase(int p , int l , int r , int x)
{
	if(l == r)
	{
		mn[x] = pr(inf , inf);
		return;
	}
	int mid = (l + r) >> 1;
	if(p <= mid) erase(p , lson);
	else erase(p , rson);
	mn[x] = min(mn[x << 1] , mn[x << 1 | 1]);
}
pr query(int b , int e , int l , int r , int x)
{
	if(b <= l && r <= e) return mn[x];
	int mid = (l + r) >> 1;
	pr ans(inf , inf);
	if(b <= mid) ans = min(ans , query(b , e , lson));
	if(e > mid) ans = min(ans , query(b , e , rson));
	return ans;
}
int main()
{
	int n , m , i;
	scanf("%d%d" , &n , &m);
	for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &key[i]) , v[++tot] = key[i];
	for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &pri[i]);
	for(i = 1 ; i <= m ; i ++ )
	{
		scanf("%s%d" , str , &qx[i]);
		if(str[0] == ‘I‘) opt[i] = 1 , scanf("%d" , &qy[i]) , v[++tot] = qx[i];
		else if(str[0] == ‘D‘) opt[i] = 2;
		else opt[i] = 3 , scanf("%d" , &qy[i]);
	}
	sort(v + 1 , v + tot + 1);
	build(1 , tot , 1);
	for(i = 1 ; i <= n ; i ++ ) insert(id(key[i]) , pri[i] , 1 , tot , 1);
	for(i = 1 ; i <= m ; i ++ )
	{
		if(opt[i] == 1) insert(id(qx[i]) , qy[i] , 1 , tot , 1);
		else if(opt[i] == 2) erase(id(qx[i]) , 1 , tot , 1);
		else if(qx[i] < qy[i]) printf("%d\n" , v[query(id(qx[i]) , id(qy[i]) , 1 , tot , 1).second]);
		else printf("%d\n" , v[query(id(qy[i]) , id(qx[i]) , 1 , tot , 1).second]);
	}
	return 0;
}
时间: 2024-10-26 00:45:14

【bzoj2770】YY的Treap 权值线段树的相关文章

【bzoj3065】带插入区间K小值 替罪羊树套权值线段树

题目描述 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理性愉悦一下,查询区间k小值.他每次向它的随从伏特提出这样的问题: 从左往右第x个到第y个跳蚤中,a[i]第k小的值是多少.这可难不倒伏特,他在脑袋里使用函数式线段树前缀和的方法水掉了跳蚤国王的询问.这时伏特发现有些跳蚤跳久了弹跳力会有变化,有的会增大,有的会减少.这可难不倒伏特,他在脑袋里使用树状数组套线段树的方法水掉了跳蚤国王的询问.(orz 主席

动态求区间K大值(权值线段树)

我们知道我们可以通过主席树来维护静态区间第K大值.我们又知道主席树满足可加性,所以我们可以用树状数组来维护主席树,树状数组的每一个节点都可以开一颗主席树,然后一起做. 我们注意到树状数组的每一棵树都和前一颗树没有关系,so,并不需要可持久化,一个朴素的权值线段树就可以啦. 我们知道普通的线段树是刚开始就把所有的节点都开了,但我们发现并不需要,因为每个点里的操作并不是很多,很大一部分的节点是用不到的,那么我们就可以不开.用Ls 和 Rs 来记左右儿子的地址,随用随开即可. #include<bit

[bzoj3932][CQOI2015]任务查询系统-题解[主席树][权值线段树]

Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第Ei秒后结束(第Si秒和Ei秒任务也在运行 ),其优先级为Pi.同一时间可能有多个任务同时执行,它们的优先级可能相同,也可能不同.调度系统会经常向 查询系统询问,第Xi秒正在运行的任务中,优先级最小的Ki个任务(即将任务按照优先级从小到大排序后取前Ki个 )的优先级之和是多少.特别的,如

P2234 [HNOI2002]营业额统计 (权值线段树)

P2234 [HNOI2002]营业额统计 题目描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是一项相当复杂的工作.由于节假日,大减价或者是其他情况的时候,营业额会出现一定的波动,当然一定的波动是能够接受的,但是在某些时候营业额突变得很高或是很低,这就证明公司此时的经营状况出现了问题.经济管理学上定义了一种最小波动值来衡量这种情况: 当最小波动值越大

【BZOJ4605】崂山白花蛇草水 权值线段树+kd-tree

[BZOJ4605]崂山白花蛇草水 Description 神犇Aleph在SDOI Round2前立了一个flag:如果进了省队,就现场直播喝崂山白花蛇草水.凭借着神犇Aleph的实力,他轻松地进了山东省省队,现在便是他履行诺言的时候了.蒟蒻Bob特地为他准备了999,999,999,999,999,999瓶崂山白花蛇草水,想要灌神犇Aleph.神犇Aleph求(跪着的)蒟蒻Bob不要灌他,由于神犇Aleph是神犇,蒟蒻Bob最终答应了他的请求,但蒟蒻Bob决定将计就计,也让神犇Aleph回答

【bzoj2161】布娃娃 权值线段树

题目描述 小时候的雨荨非常听话,是父母眼中的好孩子.在学校是老师的左右手,同学的好榜样.后来她成为艾利斯顿第二代考神,这和小时候培养的良好素质是分不开的.雨荨的妈妈也为有这么一个懂事的女儿感到高兴.一次期末考试,雨荨不知道第多少次,再次考了全年级第一名.雨荨的妈妈看到女儿100分的成绩单时,脸上又泛起了幸福的笑容,作为奖励,她给雨荨买了n个布娃娃.细心的雨荨发现,第i个布娃娃有一个耐心值P[i]以及一个魅力值C[i],并且还有能够忍受的耐心值的上限R[i]以及下限L[i].当一个布娃娃j满足L[

模板——权值线段树(逆序对)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 62455   Accepted: 23259 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swappin

【bzoj4605】崂山白花蛇草水 权值线段树套KD-tree

题目描述 神犇Aleph在SDOI Round2前立了一个flag:如果进了省队,就现场直播喝崂山白花蛇草水.凭借着神犇Aleph的实力,他轻松地进了山东省省队,现在便是他履行诺言的时候了.蒟蒻Bob特地为他准备了999,999,999,999,999,999瓶崂山白花蛇草水,想要灌神犇Aleph.神犇Aleph求(跪着的)蒟蒻Bob不要灌他,由于神犇Aleph是神犇,蒟蒻Bob最终答应了他的请求,但蒟蒻Bob决定将计就计,也让神犇Aleph回答一些问题.具体说来,蒟蒻Bob会在一个宽敞的广场上

权值线段树求逆序对问题

我们都知道,求逆序对数量可以用归并排序解决.但是用归并排序只能解决静态的序列问题,没有扩展的区间.因此就有了用权值线段树求逆序对的方法. 1 #include<iostream> 2 #include<iomanip> 3 #include<ctime> 4 #include<climits> 5 #include<algorithm> 6 #include<queue> 7 #include<vector> 8 #inc