POJ 2115 C Looooops【数论】

很容易看出来一个同余式,说到底是解一个线性同余方程,计算机解通常有拓展欧几里得和欧拉定理两种算法,参照去年的NOIP水题,问题是这题数据范围是2^32所以要int64 TAT

#include<cstdio>

#include<iostream>

#include<string.h>

#include<math.h>

using namespace std;

__int64 exgcd(__int64 a,__int64 b,__int64&x,__int64 &y)

{

if(b==0)

{

x=1;y=0;return a;

}

else

{

__int64 r=exgcd(b,a %b,y,x);

y-=x*(a/b);

return r;

}

}

__int64 lme(__int64 a,__int64 b,__int64n)//ax=b(mod n)

{

__int64 x,y;

__int64 d=exgcd(a,n,x,y);

if(b%d!=0)return -1;

__int64 e=x*(b/d)%n+n;

return e%(n/d);

}

int main()

{

__int64 a,b,c,k;

scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k);

while(1)

{

__int64 d=lme(c,b-a,1LL<<k);

if (d==-1)

{

printf("FOREVER\n");

}

else

{

printf("%I64d\n",d);

}

scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k);

if(a==0 && b==0 && c==0 && k==0) break;

}

return 0;

}

时间: 2024-10-08 20:04:45

POJ 2115 C Looooops【数论】的相关文章

POJ 2115 C Looooops(扩展欧几里得应用)

题目地址:POJ 2115 水题..公式很好推.最直接的公式就是a+n*c==b+m*2^k.然后可以变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod(2^k)的最小解.(真搞不懂为什么训练的时候好多人把青蛙的约会都给做出来了,这题却一直做不出来.....这两道不都是推公式然后变形吗.....) 代码如下: #include <iostream> #include <cstdio> #include <string> #incl

poj 2115 C Looooops (解模线性方程)

链接:poj 2115 题意:对于C语言的循环语句for(i=A ; i!=B ;i +=C), 问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数,否则输出死循环. 注:利用了 k位存储系统的数据特性进行循环(会溢出) 例如int型是16位的,那么int能保存2^16个数据, 即最大数为65535(本题默认为无符号), 当循环使得i超过65535时,则i会返回0重新开始计数 如i=65534,当i+=3时,i=1   即 i=(65534+3)%(2^16)=1 分析:设对

POJ 2115 C Looooops(模线性方程)

http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思路: 根据题意原题可化成c * x = b - a mod (2 ^ k),然后解这个模线性方程. 1 #include<iostream> 2 #include<algorithm> 3 #include<cstring> 4 #include<cstdio>

POJ 2115 C Looooops(Exgcd)

[题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, 其中变量为k比特无符号整数. [题解] 题目等价于求解Cx=(B–A)(mod 2^k),利用扩展欧几里得算法可以求解该问题 [代码] #include <algorithm> #include <cstring> #include <cstdio> using name

poj 2115 C Looooops

C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18799   Accepted: 4924 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop w

POJ 2115 C Looooops (线性同余方程)

C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19141   Accepted: 5049 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop w

POJ - 2115 - C Looooops (扩展欧几里得)

C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19826   Accepted: 5299 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop w

POJ 2115 C Looooops(扩展欧几里得)

辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } 扩展欧几里得算法 时间复杂度和欧几里得算法相同 int extgcd(int a, int b, int& x, int& y) { int d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x;

poj 2115 C Looooops(推公式+扩展欧几里得模板)

Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statem