梯度下降算法分类总结

引言

梯度下降法 (Gradient Descent Algorithm,GD) 是为目标函数J(θ),如代价函数(cost function), 求解全局最小值(Global Minimum)的一种迭代算法。

为什么使用梯度下降法

我们使用梯度下降法最小化目标函数J(θ)。在使用梯度下降法时,首先初始化参数值,然后一直改变这些值,直到得到全局最小值。其中,我们计算在每次迭代时计算代价函数的导数,然后使用如下公式同时更新参数值:

α表示学习速率(learning rate)。

梯度下降法的工作原理

下面的伪代码能够解释其详细原理:

1. 初始化参数值

2. 迭代更新这些参数使目标函数J(θ)不断变小。

梯度下降法的类型

基于如何使用数据计算代价函数的导数,梯度下降法可以被定义为不同的形式(various variants)。确切地说,根据使用数据量的大小(the amount of data),时间复杂度(time complexity)和算法的准确率(accuracy of the algorithm),梯度下降法可分为:

1.       批量梯度下降法(Batch Gradient Descent, BGD);

2.       随机梯度下降法(Stochastic Gradient Descent, SGD);

3.       小批量梯度下降法(Mini-Batch Gradient Descent, MBGD)。

批量梯度下降法原理

这是梯度下降法的基本类型,这种方法使用整个数据集(the complete dataset)去计算代价函数的梯度。每次使用全部数据计算梯度去更新参数,批量梯度下降法会很慢,并且很难处理不能载入内存(don’t fit in memory)的数据集。在随机初始化参数后,按如下方式计算代价函数的梯度:

其中,m是训练样本(training examples)的数量。

Note:

1. 如果训练集有3亿条数据,你需要从硬盘读取全部数据到内存中;

2. 每次一次计算完求和后,就进行参数更新;

3.  然后重复上面每一步;

4. 这意味着需要较长的时间才能收敛;

5. 特别是因为磁盘输入/输出(disk I/O)是系统典型瓶颈,所以这种方法会不可避免地需要大量的读取。

上图是每次迭代后的等高线图,每个不同颜色的线表示代价函数不同的值。运用梯度下降会快速收敛到圆心,即唯一的一个全局最小值。批量梯度下降法不适合大数据集。

随机梯度下降法原理

批量梯度下降法被证明是一个较慢的算法,所以,我们可以选择随机梯度下降法达到更快的计算。随机梯度下降法的第一步是随机化整个数据集。在每次迭代仅选择一个训练样本去计算代价函数的梯度,然后更新参数。即使是大规模数据集,随机梯度下降法也会很快收敛。随机梯度下降法得到结果的准确性可能不会是最好的,但是计算结果的速度很快。在随机化初始参数之后,使用如下方法计算代价函数的梯度:

这里m表示训练样本的数量。

如下为随机梯度下降法的伪码:

1. 进入内循环(inner loop);

2. 第一步:挑选第一个训练样本并更新参数,然后使用第二个实例;

3. 第二步:选第二个训练样本,继续更新参数;

4. 然后进行第三步…直到第n步;

5. 直到达到全局最小值

如下图所示,随机梯度下降法不像批量梯度下降法那样收敛,而是游走到接近全局最小值的区域终止。

小批量梯度下降法原理

小批量梯度下降法是最广泛使用的一种算法,该算法每次使用m个训练样本(称之为一批)进行训练,能够更快得出准确的答案。小批量梯度下降法不是使用完整数据集,在每次迭代中仅使用m个训练样本去计算代价函数的梯度。一般小批量梯度下降法所选取的样本数量在50到256个之间,视具体应用而定。

1.这种方法减少了参数更新时的变化,能够更加稳定地收敛。

2.同时,也能利用高度优化的矩阵,进行高效的梯度计算。

随机初始化参数后,按如下伪码计算代价函数的梯度:

这里b表示一批训练样本的个数,m是训练样本的总数。

Notes:

1. 实现该算法时,同时更新参数。

2. 学习速率α(也称之为步长)如果α过大,算法可能不会收敛;如果α比较小,就会很容易收敛。

3. 检查梯度下降法的工作过程。画出迭代次数与每次迭代后代价函数值的关系图,这能够帮助你了解梯度下降法是否取得了好的效果。每次迭代后J(θ)应该降低,多次迭代后应该趋于收敛。

4. 不同的学习速率在梯度下降法中的效果

总结

本文详细介绍了不同类型的梯度下降法。这些算法已经被广泛应用于神经网络。下面的图详细展示了3种梯度下降法的比较。

注:摘自:北邮@爱可可-爱生活 老师,阿里云云栖社区组织翻译。

原标题《3 Types of Gradient Descent Algorithms for Small & Large Data Sets》,由HackerEarth blog发布。

时间: 2024-12-29 07:11:36

梯度下降算法分类总结的相关文章

自适应滤波:梯度下降算法

作者:桂. 时间:2017-04-01  06:39:15 链接:http://www.cnblogs.com/xingshansi/p/6654372.html 声明:欢迎被转载,不过记得注明出处哦~ [学习笔记07] 未完待续 前言 西蒙.赫金的<自适应滤波器原理>第四版第四章:最速下降算法.优化求解按照有/无约束分类:如投影梯度下降算法((Gradient projection)便是有约束的优化求解:按照一阶二阶分类:梯度下降(Gradient descent).Newton法等:按照偏

梯度下降算法

首先定义几个符号: Xi vector[X]:input data Yi vector[Y]:output data h(X) hypothesis function 对于输入的数据给出预测值 Y is continous variation?regression problem(回归问题) Y is discrete variation?classification problem(分类问题) PART 1:线性回归 如图,蓝色的离散点是Xi,红色的线就是求出的回归函数. hypothesis

感知机2 -- 随机梯度下降算法

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结.不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,因为本人在学习初始时有非常多数学知识都已忘记.因此为了弄懂当中的内容查阅了非常多资料.所以里面应该会有引用其它帖子的小部分内容,假设原作者看到能够私信我.我会将您的帖子的地址付到以下. 3,假设有内容错误或不准确欢迎大家指正. 4,假设能帮到你,那真是太好了. 概述 随意选取一超平面w0.b0,然后用随机梯度下降算法不断极小化L(w, b). Ps: 极小化的

斯坦福CS229机器学习课程笔记一:线性回归与梯度下降算法

应该是去年的这个时候,我开始接触机器学习的相关知识,当时的入门书籍是<数据挖掘导论>.囫囵吞枣般看完了各个知名的分类器:决策树.朴素贝叶斯.SVM.神经网络.随机森林等等:另外较为认真地复习了统计学,学习了线性回归,也得以通过orange.spss.R做一些分类预测工作.可是对外说自己是搞机器学习的还是不太自信,毕竟和科班出身的各位大牛相比自己对这些模型.算法的理解只能算是“知其然而不知其所以然”,用起来总感觉哪里不对劲. 因此,去年早早地就把网易公开课上Andrew大神的斯坦福CS229课程

Hulu机器学习问题与解答系列 | 十七:随机梯度下降算法之经典变种

这是本周第二篇机器学习,也是Hulu面试题系列的第十七篇了~ 之前的所有内容都可以在菜单栏的"机器学习"中找到,愿你温故,知新. 今天的内容是 [随机梯度下降算法之经典变种] 场景描述 提到Deep Learning中的优化方法,人们都会想到Stochastic Gradient Descent (SGD),但是SGD并不是理想的万金油,反而有时会成为一个坑.当你设计出一个deep neural network时,如果只知道用SGD来训练,不少情况下你得到一个很差的训练结果,于是你放弃

简单多元线性回归(梯度下降算法与矩阵法)

多元线性回归是最简单的机器学习模型,通过给定的训练数据集,拟合出一个线性模型,进而对新数据做出预测. 对应的模型如下: n: 特征数量. 一般选取残差平方和最小化作为损失函数,对应为: M:训练样本数量. 通过最小化代价损失函数,来求得 值,一般优化的方法有两种,第一是梯度下降算法(Gradient Descent),第二种是矩阵法(The normal equations). 梯度下降算法

梯度下降算法笔记

今天课上主要讲的是梯度下降算法. 上一次老师留了梯度下降算法求解线性回归的作业.大部分用java和C++实现的. 笔记也主要来自课程ppt,老师课程的ppt也主要参考的斯坦福吴恩达老师的讲义. 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度

梯度下降算法的一点认识

昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法.到了教授推导公式的时候感觉有点蒙,不过后来仔细想想,也大概理解了,这个算法并没有想象的晦涩.在这堂课中,梯度下降算法是为了解决线性回归问题的.视频中的例子是给你一堆训练数据,(房子面积和对应房价),如果此时给你一个没有出现过的房子面积数据,您能否给出正确的房价?解决思路是首先要看出来房子面积跟房价之

神经网络与深度学习(2):梯度下降算法和随机梯度下降算法

本文总结自<Neural Networks and Deep Learning>第1章的部分内容. 使用梯度下降算法进行学习(Learning with gradient descent) 1. 目标 我们希望有一个算法,能让我们找到权重和偏置,以至于网络的输出y(x) 能够拟合所有的训练输入x. 2. 代价函数(cost function) 定义一个Cost function (loss function, objective function): 目标函数,如下: C: 被称为二次代价函数