Python中yield

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(Generator)。

一、迭代器(iterator)

在Python中,for循环可以用于Python中的任何类型,包括列表、元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器

迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发
StopIteration。任何这类的对象在Python中都可以用for循环或其他遍历工具迭代,迭代工具内部会在每次迭代时调用next方法,并且
捕捉StopIteration异常来确定何时离开。

使用迭代器一个显而易见的好处就是:每次只从对象中读取一条数据,不会造成内存的过大开销。

比如要逐行读取一个文件的内容,利用readlines()方法,我们可以这么写:

for line in open("test.txt").readlines():
    print line

这样虽然可以工作,但不是最好的方法。因为他实际上是把文件一次加载到内存中,然后逐行打印。当文件很大时,这个方法的内存开销就很大了。

利用file的迭代器,我们可以这样写:

for line in open("test.txt"):   #use file iterators
    print line

这是最简单也是运行速度最快的写法,他并没显式的读取文件,而是利用迭代器每次读取下一行。

二、生成器(Generator)

生成器函数在Python中与迭代器协议的概念联系在一起。简而言之,包含yield语句的函数会被特地编译成生成器。当函数被调用时,他们返回一个生成器对象,这个对象支持迭代器接口。函数也许会有个return语句,但它的作用是用来yield产生值的。

不像一般的函数会生成值后退出,生成器函数在生成值后会自动挂起并暂停他们的执行和状态,他的本地变量将保存状态信息,这些信息在函数恢复时将再度有效

>>> def g(n):
...     for i in range(n):
...             yield i **2
...
>>> for i in g(5):
...     print i,":",
...
0 : 1 : 4 : 9 : 16 :

要了解他的运行原理,我们来用next方法看看:

>>> t = g(5)
>>> t.next()
0
>>> t.next()
1
>>> t.next()
4
>>> t.next()
9
>>> t.next()
16
>>> t.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

在运行完5次next之后,生成器抛出了一个StopIteration异常,迭代终止。
再来看一个yield的例子,用生成器生成一个Fibonacci数列:

def fab(max):
    a,b = 0,1
    while a < max:
        yield a
        a, b = b, a+b
 
>>> for i in fab(20):
...     print i,",",
...
0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 ,

看到这里应该就能理解生成器那个很抽象的概念了吧~~

时间: 2024-10-29 19:09:21

Python中yield的相关文章

[转]Python中yield的解释

转自: http://python.jobbole.com/83610/ 本文作者: 伯乐在线 - wklken .未经作者许可,禁止转载!欢迎加入伯乐在线 专栏作者. 翻译 来源于stackoverflow问答,原文链接 Here SN上面看到的,顺手翻译下,第一次翻译,好多地方翻的不是很好 :) 问题: 1 Python中yield关键字的作用是什么?它做了什么? 例如,我想理解以下代码 1 2 3 def node._get_child_candidates(self, distance,

python中yield用法

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor). 一.迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表.元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器 迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发 StopIteration.任何这类的对象在Python中都可以用for循

python中yield使用

16.yield使用 列表推导与生成器表达式 当我们创建了一个列表的时候,就创建了一个可以迭代的对象: >>> squares=[n*n for n in range(3)] >>> for i in squares:     print i 0 1 4 这种创建列表的操作很常见,称为列表推导.但是像列表这样的迭代器,比如str.file等,虽然用起来很方便,但有一点,它们是储存在内存中的,如果值很大,会很麻烦. 而生成器表达式不同,它执行的计算与列表包含相同,但会迭代

python中yield的用法及生成器的理解

首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受. 接下来是正题: 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了.看做return之后再把它看做一个是

关于Python中yield的一些个人见解

# 样例代码def yield_test(n): for i in range(n): yield call(i) print("i=",i) #做一些其它的事情 print("do something.") print("end.") def call(i): return i*2 #使用for循环 for i in yield_test(5): print(i,",") 最近在scrapy爬虫方面接触了很多yield,找了

详解Python中yield生成器的用法

yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的). yield是一个表达式,是有返回值的. 当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停, 参考:http://www.aichengxu.com/view/64610  见第一个例子: 例1: >>> def mygenerator(): ... print 'start...' ..

python中yield的用法

昨天看了许多条博客,同时问了大佬一些心中的疑惑,对这个yield心中有了些许的理解,虽然可能没有理解到他的内涵,但至少在使用时该如何使用还是有了些许了解,因此决定写出来分享 首先我们得了解一个东西叫迭代器,通常的for-in-循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件.它可以是mylist = [1, 2, 3],也可以是mylist = [x*x for x in range(3)]. 它的缺陷是所有数据都在内存中,如果有海量数据的话将会非常耗内存.他

Python中yield解析

小探yield 查看 python yield 文档 yield expressions: Using a yield expression in a function's body causes that function to be a generator can only be used in the body of a function definition 翻译成人话就是: 使用yield表达式会将函数体变成生成器,而且只能在函数定义的主体中使用. 迭代对象 我一般使用的 for *

python中yield的用法详解——最简单,最清晰的解释

本文收自:冯爽朗 ,下面有博主名片 个人分类: python 首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受. 接下来是正题: 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做"return",这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某