boot/setup.S

!
! setup.S Copyright (C) 1991, 1992 Linus Torvalds
!
! setup.s is
responsible for getting the system data from the BIOS,
! and putting them
into the appropriate places in system memory.
! both setup.s and system has
been loaded by the bootblock.
!
! This code asks the bios for
memory/disk/other parameters, and
! puts them in a "safe" place:
0x90000-0x901FF, ie where the
! boot-block used to be. It is then up to the
protected mode
! system to read them from there before the area is
overwritten
! for buffer-blocks.
!
! Move PS/2 aux init code to
psaux.c
! ([email protected]) 03Oct92
!
! some changes
and additional features by Christoph Niemann, March 1993
!
([email protected])
!

! NOTE! These had better be the same as in bootsect.s!
#include
<linux/config.h>
#include <linux/segment.h>

#ifndef SVGA_MODE
#define SVGA_MODE ASK_VGA
#endif

INITSEG = DEF_INITSEG ! we move boot here - out of the way
SYSSEG =
DEF_SYSSEG ! system loaded at 0x10000 (65536).
SETUPSEG = DEF_SETUPSEG ! this
is the current segment

.globl begtext, begdata, begbss, endtext, enddata,
endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text

! 程序入口
entry start
start:

! ok, the read went well so we get current cursor position and save it
for
! posterity.
! ok,读取正常,现在我们获取当前光标位置然后保存

! 设定ds段位置
mov ax,#INITSEG ! this is done in bootsect already,
but...
mov ds,ax

! Get memory size (extended mem, kB)
!
获取内存
mov ah,#0x88
int 0x15
mov [2],ax

! set the keyboard repeat rate to the max
!
设置键盘最大重复速率
mov ax,#0x0305
xor bx,bx ! clear bx
int 0x16

! check for EGA/VGA and some config parameters
! 检测EGA/VGA并配置参数

mov ah,#0x12
mov bl,#0x10
int 0x10
mov [8],ax
mov [10],bx
mov [12],cx
mov ax,#0x5019
cmp bl,#0x10
je novga
mov ax,#0x1a00 !
Added check for EGA/VGA
discrimination
int 0x10
mov bx,ax
mov ax,#0x5019
cmp bl,#0x1a !
1a means VGA, anything else EGA or lower
jne novga
call chsvga !
子函数,过程比较简单,但是读取的可能配置比较多
novga: mov [14],ax
mov ah,#0x03 ! read cursor
pos
xor bh,bh ! clear bh
int 0x10 ! save it in known place, con_init
fetches
mov [0],dx ! it from 0x90000.

! Get video-card data:
!
获取显卡数据

mov ah,#0x0f
int 0x10
mov [4],bx ! bh = display
page
mov [6],ax ! al = video mode, ah = window width

! Get hd0 data
! 获取第一个硬盘数据

xor ax,ax ! clear
ax
mov ds,ax
lds si,[4*0x41]
mov ax,#INITSEG
mov es,ax
mov di,#0x0080
mov cx,#0x10
cld
rep
movsb

! Get hd1 data
! 获取第二个硬盘数据

xor ax,ax ! clear
ax
mov ds,ax
lds si,[4*0x46]
mov ax,#INITSEG
mov es,ax
mov di,#0x0090
mov cx,#0x10
cld
rep
movsb

! Check that there IS a hd1 :-)
!
检测硬盘数量
mov ax,#0x01500
mov dl,#0x81
int 0x13
jc no_disk1
cmp ah,#3
je is_disk1
no_disk1:
!
没有第二块硬盘的处理
mov ax,#INITSEG
mov es,ax
mov di,#0x0090
mov cx,#0x10
xor ax,ax !
clear ax
cld
rep
stosb
is_disk1:

! check for PS/2 pointing device
!
检测PS/2设备,应该是鼠标
mov ax,#INITSEG
mov ds,ax
mov [0x1ff],#0 ! default is
no pointing device
int 0x11 ! int 0x11: equipment
determination
test al,#0x04 ! check if pointing device
installed
jz no_psmouse
mov [0x1ff],#0xaa ! device
present
no_psmouse:
! now we want to move to protected mode ...
!
准备进入保护模式
cli ! no interrupts allowed !
mov al,#0x80 ! disable NMI for
the bootup sequence
out #0x70,al

! first we move the system to its rightful place
!
首先我们移动system到正确的位置
mov ax,#0x100 ! start of destination
segment
mov bx,#0x1000 ! start of source segment
cld ! ‘direction‘=0,
movs moves forward
do_move: ! 上面是初始化,下面开始移动
mov es,ax !
destination
segment
add ax,#0x100
cmp ax,#0x9000
jz end_move
mov ds,bx !
source segment
add bx,#0x100
sub di,di
sub si,si
mov
cx,#0x800
rep
movsw
jmp do_move

! then we load the segment descriptors
! 移动完毕,我们加载段描述符

end_move:
mov ax,#SETUPSEG ! right, forgot this at first. didn‘t work
:-)
mov ds,ax
! 加载idt
lidt idt_48 ! load idt with 0,0
!
加载gdt
lgdt gdt_48 ! load gdt with whatever appropriate

! that was painless, now we enable A20
! 设置完毕,我们现在准备打开A20地址线

call empty_8042
mov al,#0xD1 ! command
write
out #0x64,al
call empty_8042
mov al,#0xDF ! A20
on
out #0x60,al
call empty_8042

! make sure any possible coprocessor is properly reset..
! 确保处理器正确设置

xor ax,ax
out #0xf0,al
call delay
out #0xf1,al
call delay

! well, that went ok, I hope. Now we have to reprogram the interrupts
:-(
! we put them right after the intel-reserved hardware interrupts, at
!
int 0x20-0x2F. There they won‘t mess up anything. Sadly IBM really
! messed
this up with the original PC, and they haven‘t been able to
! rectify it
afterwards. Thus the bios puts interrupts at 0x08-0x0f,
! which is used for
the internal hardware interrupts as well. We just
! have to reprogram the
8259‘s, and it isn‘t fun.

! 重新设置中断
mov al,#0x11 ! initialization sequence
out #0x20,al ! send
it to 8259A-1
call delay
out #0xA0,al ! and to
8259A-2
call delay
mov al,#0x20 ! start of hardware int‘s
(0x20)
out #0x21,al
call delay
mov al,#0x28 ! start of hardware
int‘s 2 (0x28)
out #0xA1,al
call delay
mov al,#0x04 ! 8259-1 is
master
out #0x21,al
call delay
mov al,#0x02 ! 8259-2 is
slave
out #0xA1,al
call delay
mov al,#0x01 ! 8086 mode for
both
out #0x21,al
call delay
out #0xA1,al
call delay
mov al,#0xFF !
mask off all interrupts for
now
out #0xA1,al
call delay
mov al,#0xFB ! mask all irq‘s but irq2
which
out #0x21,al ! is cascaded

! well, that certainly wasn‘t fun :-(. Hopefully it works, and we don‘t
!
need no steenking BIOS anyway (except for the initial loading :-).
! The
BIOS-routine wants lots of unnecessary data, and it‘s less
! "interesting"
anyway. This is how REAL programmers do it.
!
! Well, now‘s the time to
actually move into protected mode. To make
! things as simple as possible, we
do no register set-up or anything,
! we let the gnu-compiled 32-bit programs
do that. We just jump to
! absolute address 0x00000, in 32-bit protected
mode.
!
! Note that the short jump isn‘t strictly needed, althought there
are
! reasons why it might be a good idea. It won‘t hurt in any
case.
!
! 打开地址线,进入保护模式
mov ax,#0x0001 ! protected mode (PE)
bit
lmsw ax ! This is
it!
jmp flush_instr
flush_instr:
jmpi 0x1000,KERNEL_CS ! jmp offset
1000 of segment 0x10 (cs)
! 跳转到cs段的偏移为0x1000处执行,即执行zBoot/head.s

! This routine checks that the keyboard command queue is empty
! (after
emptying the output buffers)
!
! No timeout is used - if this hangs there
is something wrong with
! the machine, and we probably couldn‘t proceed
anyway.
empty_8042:
call delay
in al,#0x64 ! 8042 status
port
test al,#1 ! output
buffer?
jz no_output
call delay
in al,#0x60 ! read
it
jmp empty_8042
no_output:
test al,#2 ! is input buffer
full?
jnz empty_8042 ! yes - loop
ret
!
! Read a key and return
the (US-)ascii code in al, scan code in
ah
!
getkey:
xor ah,ah
int 0x16
ret

!
! Read a key with a timeout of 30 seconds. The cmos clock is used to
get
! the time.
!
getkt:
call gettime
add al,#30 ! wait 30
seconds
cmp al,#60
jl lminute
sub al,#60
lminute:
mov cl,al
again: mov ah,#0x01
int 0x16
jnz getkey !
key pressed, so get
it
call gettime
cmp al,cl
jne again
mov al,#0x20 ! timeout,
return default char `space‘
ret

!
! Flush the keyboard
buffer
!
flush: mov ah,#0x01
int 0x16
jz empty
xor ah,ah
int 0x16
jmp flush
empty: ret

!
! Read the cmos clock. Return the seconds in
al
!
gettime:
push cx
mov ah,#0x02
int 0x1a
mov al,dh !
dh contains the
seconds
and al,#0x0f
mov ah,dh
mov cl,#0x04
shr ah,cl
aad
pop cx
ret

!
! Delay is needed after doing i/o
!
delay:
.word 0x00eb !
jmp $+2
ret

! Routine trying to recognize type of SVGA-board present (if any)
! and if
it recognize one gives the choices of resolution it offers.
! If one is found
the resolution chosen is given by al,ah (rows,cols).

chsvga: cld
push ds
push cs
mov ax,[0x01fa]
pop ds
mov modesave,ax
mov
ax,#0xc000
mov es,ax
mov ax,modesave
cmp ax,#NORMAL_VGA
je defvga
cmp ax,#EXTENDED_VGA
je vga50
cmp ax,#ASK_VGA
jne svga
lea si,msg1
call prtstr
call flush
nokey: call getkt
cmp al,#0x0d !
enter ?
je svga ! yes - svga selection
cmp al,#0x20 ! space
?
je defvga ! no - repeat
call
beep
jmp nokey
defvga: mov ax,#0x5019
pop ds
ret
/* extended
vga mode: 80x50 */
vga50:
mov ax,#0x1112
xor bl,bl
int 0x10 !
use 8x8 font set (50 lines on
VGA)
mov ax,#0x1200
mov bl,#0x20
int 0x10 ! use alternate print
screen
mov ax,#0x1201
mov bl,#0x34
int 0x10 ! turn off cursor
emulation
mov ah,#0x01
mov cx,#0x0607
int 0x10 ! turn on cursor
(scan lines 6 to 7)
pop ds
mov ax,#0x5032 ! return 80x50
ret
/*
extended vga mode: 80x28 */
vga28:
pop ax ! clean the
stack
mov ax,#0x1111
xor bl,bl
int 0x10 ! use 9x14 fontset (28
lines on VGA)
mov ah, #0x01
mov cx,#0x0b0c
int 0x10 ! turn on
cursor (scan lines 11 to 12)
pop ds
mov ax,#0x501c ! return
80x28
ret
/* svga modes */
svga: cld
lea si,id9GXE !
Check for the #9GXE ([email protected],thanks
[email protected])
mov di,#0x49 ! id string is at
c000:049
mov cx,#0x11 ! length of "Graphics Power By"

repe
cmpsb
jne of1280
is9GXE: lea si,dsc9GXE !
table of descriptions of video modes for BIOS
lea di,mo9GXE ! table of sizes
of video modes for my BIOS
br selmod ! go ask for video
mode
of1280: cld
lea si,idf1280 ! Check for Orchid F1280
([email protected])
mov di,#0x10a ! id string is at
c000:010a
mov cx,#0x21 !
length
repe
cmpsb
jne nf1280
isVRAM: lea si,dscf1280
lea di,mof1280
br selmod
nf1280: lea si,idVRAM
mov di,#0x10a
mov cx,#0x0c
repe
cmpsb
je isVRAM
cld
lea
si,idati ! Check ATI ‘clues‘
mov di,#0x31
mov
cx,#0x09
repe
cmpsb
jne noati
lea si,dscati
lea di,moati
br selmod
noati: mov ax,#0x200f !
Check Ahead
‘clues‘
mov dx,#0x3ce
out dx,ax
inc dx
in al,dx
cmp al,#0x20
je isahed
cmp al,#0x21
jne noahed
isahed: lea si,dscahead
lea di,moahead
br selmod
noahed: mov dx,#0x3c3 !
Check Chips & Tech.
‘clues‘
in al,dx
or al,#0x10
out dx,al
mov dx,#0x104
in al,dx
mov bl,al
mov dx,#0x3c3
in al,dx
and al,#0xef
out dx,al
cmp bl,[idcandt]
jne nocant
lea si,dsccandt
lea di,mocandt
br selmod
nocant: mov dx,#0x3d4 !
Check Cirrus
‘clues‘
mov al,#0x0c
out dx,al
inc dx
in al,dx
mov bl,al
xor al,al
out dx,al
dec dx
mov al,#0x1f
out dx,al
inc dx
in al,dx
mov bh,al
xor ah,ah
shl al,#4
mov cx,ax
mov al,bh
shr al,#4
add cx,ax
shl cx,#8
add cx,#6
mov ax,cx
mov dx,#0x3c4
out dx,ax
inc dx
in al,dx
and al,al
jnz nocirr
mov al,bh
out dx,al
in al,dx
cmp al,#0x01
jne nocirr
call rst3d4
lea si,dsccirrus
lea di,mocirrus
br selmod
rst3d4: mov dx,#0x3d4
mov al,bl
xor ah,ah
shl ax,#8
add ax,#0x0c
out dx,ax
ret
nocirr: call rst3d4 !
Check Everex
‘clues‘
mov ax,#0x7000
xor bx,bx
int 0x10
cmp al,#0x70
jne noevrx
shr dx,#4
cmp dx,#0x678
je istrid
cmp dx,#0x236
je istrid
lea si,dsceverex
lea di,moeverex
br selmod
istrid: lea cx,ev2tri
jmp cx
noevrx: lea si,idgenoa !
Check Genoa ‘clues‘
xor ax,ax
seg
es
mov al,[0x37]
mov di,ax
mov cx,#0x04
dec si
dec di
l1: inc si
inc di
mov al,(si)
test al,al
jz l2
seg
es
cmp al,(di)
l2: loope
l1
cmp cx,#0x00
jne nogen
lea si,dscgenoa
lea di,mogenoa
br selmod
nogen: cld
lea si,idoakvga
mov di,#0x08
mov cx,#0x08
repe
cmpsb
jne nooak
lea si,dscoakvga
lea di,mooakvga
br selmod
nooak: cld
lea si,idparadise !
Check Paradise
‘clues‘
mov di,#0x7d
mov cx,#0x04
repe
cmpsb
jne nopara
lea si,dscparadise
lea di,moparadise
br selmod
nopara: mov dx,#0x3c4 !
Check Trident
‘clues‘
mov al,#0x0e
out dx,al
inc dx
in al,dx
xchg ah,al
xor al,al
out dx,al
in al,dx
xchg al,ah
mov bl,al !
Strange thing ... in the book this wasn‘t
and bl,#0x02 ! necessary but it
worked on my card which
jz setb2 ! is a trident. Without it the screen
goes
and al,#0xfd ! blurred
...
jmp clrb2 !
setb2: or al,#0x02 !
clrb2: out dx,al
and ah,#0x0f
cmp ah,#0x02
jne notrid
ev2tri: lea si,dsctrident
lea di,motrident
jmp selmod
notrid: mov dx,#0x3cd !
Check Tseng ‘clues‘
in al,dx ! Could things be this simple !
:-)
mov bl,al
mov al,#0x55
out dx,al
in al,dx
mov ah,al
mov al,bl
out dx,al
cmp ah,#0x55

jne notsen
lea si,dsctseng
lea di,motseng
jmp selmod
notsen: mov dx,#0x3cc !
Check Video7
‘clues‘
in al,dx
mov dx,#0x3b4
and al,#0x01
jz even7
mov dx,#0x3d4
even7: mov al,#0x0c
out dx,al
inc dx
in al,dx
mov bl,al
mov al,#0x55
out dx,al
in al,dx
dec dx
mov al,#0x1f
out dx,al
inc dx
in al,dx
mov bh,al
dec dx
mov al,#0x0c
out dx,al
inc dx
mov al,bl
out dx,al
mov al,#0x55
xor al,#0xea
cmp al,bh
jne novid7
lea si,dscvideo7
lea di,movideo7
jmp selmod
novid7: lea si,dsunknown
lea di,mounknown
selmod: xor cx,cx
mov cl,(di)
mov ax,modesave
cmp ax,#ASK_VGA
je askmod
cmp ax,#NORMAL_VGA
je askmod
cmp al,cl
jl gotmode
push si
lea si,msg4
call prtstr
pop si
askmod: push si
lea si,msg2
call prtstr
pop si
push si
push cx
tbl: pop bx
push bx
mov al,bl
sub al,cl
call modepr
lodsw
xchg al,ah
call dprnt
xchg ah,al
push ax
mov al,#0x78
call prnt1
pop ax
call dprnt
push si
lea si,crlf ! print
CR+LF
call prtstr
pop si
loop tbl
pop cx
lea si,msg3
call prtstr
pop si
add cl,#0x30
jmp nonum
nonumb: call beep
nonum: call getkey
cmp al,#0x30 !
ascii `0‘
jb nonumb
cmp al,#0x3a ! ascii
`9‘
jbe number
cmp al,#0x61 ! ascii `a‘
jb nonumb
cmp al,#0x7a !
ascii
`z‘
ja nonumb
sub al,#0x27
cmp al,cl
jae nonumb
sub al,#0x30
jmp gotmode
number:
cmp al,cl
jae nonumb
sub al,#0x30
gotmode: xor ah,ah
or al,al
beq vga50
push ax
dec ax
beq vga28
add di,ax
mov al,(di)
int
0x10
pop ax
shl ax,#1
add si,ax
lodsw
pop ds
ret

! Routine to print asciiz-string at DS:SI

prtstr: lodsb
and al,al
jz fin
call prnt1
jmp prtstr
fin: ret

! Routine to print a decimal value on screen, the value to be
! printed is
put in al (i.e 0-255).

dprnt: push ax
push cx
xor ah,ah ! Clear
ah
mov cl,#0x0a
idiv cl
cmp al,#0x09
jbe lt100
call dprnt
jmp skip10
lt100: add al,#0x30
call prnt1
skip10: mov al,ah
add al,#0x30
call prnt1
pop cx
pop ax
ret

!
! Routine to print the mode number key on screen. Mode numbers
! 0-9
print the ascii values `0‘ to ‘9‘, 10-35 are represented by
! the letters `a‘
to `z‘. This routine prints some spaces around the
! mode no.
!

modepr: push ax
cmp al,#0x0a
jb digit ! Here is no check for number
> 35
add al,#0x27
digit: add al,#0x30
mov modenr, al
push
si
lea si, modestring
call prtstr
pop si
pop ax
ret

! Part of above routine, this one just prints ascii al

prnt1: push ax
push cx
xor bh,bh
mov cx,#0x01
mov ah,#0x0e
int 0x10
pop cx
pop ax
ret

beep: mov al,#0x07
jmp prnt1

gdt:
.word 0,0,0,0 ! dummy

.word 0,0,0,0 ! unused

.word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 ! base
address=0
.word 0x9A00 ! code read/exec
.word 0x00C0 !
granularity=4096, 386

.word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)
.word 0x0000 ! base
address=0
.word 0x9200 ! data read/write
.word 0x00C0 !
granularity=4096, 386

idt_48:
.word 0 ! idt limit=0
.word 0,0 ! idt base=0L

gdt_48:
.word 0x800 ! gdt limit=2048, 256 GDT
entries
.word 512+gdt,0x9 ! gdt base = 0X9xxxx

msg1: .ascii "Press <RETURN> to see SVGA-modes available,
<SPACE> to continue or wait 30 secs."
db 0x0d, 0x0a, 0x0a,
0x00
msg2: .ascii "Mode: COLSxROWS:"
db 0x0d, 0x0a, 0x0a,
0x00
msg3: db 0x0d, 0x0a
.ascii "Choose mode by pressing the
corresponding number or letter."
crlf: db 0x0d, 0x0a,
0x00
msg4: .ascii "You passed an undefined mode number to setup. Please
choose a new mode."
db 0x0d, 0x0a, 0x0a, 0x07, 0x00
modestring: .ascii "
"
modenr: db 0x00 ! mode number
.ascii ":
"
db 0x00

idati: .ascii "761295520"
idcandt: .byte 0xa5
idgenoa: .byte 0x77,
0x00, 0x99, 0x66
idparadise: .ascii "VGA="
idoakvga: .ascii "OAK VGA
"
idf1280: .ascii "Orchid Technology Fahrenheit 1280"
id9GXE: .ascii
"Graphics Power By"
idVRAM: .ascii "Stealth VRAM"

! Manufacturer: Numofmodes+2: Mode:
! Number of modes is the number of
chip-specific svga modes plus the extended
! modes available on any vga
(currently 2)

moati: .byte 0x04, 0x23, 0x33
moahead: .byte 0x07, 0x22, 0x23, 0x24,
0x2f, 0x34
mocandt: .byte 0x04, 0x60, 0x61
mocirrus: .byte 0x06, 0x1f,
0x20, 0x22, 0x31
moeverex: .byte 0x0c, 0x03, 0x04, 0x07, 0x08, 0x0a, 0x0b,
0x16, 0x18, 0x21, 0x40
mogenoa: .byte 0x0c, 0x58, 0x5a, 0x60, 0x61, 0x62,
0x63, 0x64, 0x72, 0x74, 0x78
moparadise: .byte 0x04, 0x55,
0x54
motrident: .byte 0x09, 0x50, 0x51, 0x52, 0x57, 0x58, 0x59,
0x5a
motseng: .byte 0x07, 0x26, 0x2a, 0x23, 0x24,
0x22
movideo7: .byte 0x08, 0x40, 0x43, 0x44, 0x41, 0x42,
0x45
mooakvga: .byte 0x08, 0x00, 0x07, 0x4e, 0x4f, 0x50,
0x51
mo9GXE: .byte 0x04, 0x54, 0x55
mof1280: .byte 0x04, 0x54,
0x55
mounknown: .byte 0x02

! msb = Cols lsb = Rows:
! The first two modes are standard vga modes
available on any vga.
! mode 0 is 80x50 and mode 1 is 80x28

dscati: .word 0x5032, 0x501c, 0x8419, 0x842c
dscahead: .word 0x5032,
0x501c, 0x842c, 0x8419, 0x841c, 0xa032, 0x5042
dsccandt: .word 0x5032,
0x501c, 0x8419, 0x8432
dsccirrus: .word 0x5032, 0x501c, 0x8419, 0x842c,
0x841e, 0x6425
dsceverex: .word 0x5032, 0x501c, 0x5022, 0x503c, 0x642b,
0x644b, 0x8419, 0x842c, 0x501e, 0x641b, 0xa040,
0x841e
dscgenoa: .word 0x5032, 0x501c, 0x5020, 0x642a, 0x8419, 0x841d,
0x8420, 0x842c, 0x843c, 0x503c, 0x5042, 0x644b
dscparadise: .word 0x5032,
0x501c, 0x8419, 0x842b
dsctrident: .word 0x5032, 0x501c, 0x501e, 0x502b,
0x503c, 0x8419, 0x841e, 0x842b, 0x843c
dsctseng: .word 0x5032, 0x501c,
0x503c, 0x6428, 0x8419, 0x841c, 0x842c
dscvideo7: .word 0x5032, 0x501c,
0x502b, 0x503c, 0x643c, 0x8419, 0x842c, 0x841c
dscoakvga: .word 0x5032,
0x501c, 0x2819, 0x5019, 0x503c, 0x843c, 0x8419,
0x842b
dscf1280: .word 0x5032, 0x501c, 0x842b,
0x8419
dsc9GXE: .word 0x5032, 0x501c, 0x842b,
0x8419
dsunknown: .word 0x5032, 0x501c
modesave: .word SVGA_MODE

.text
endtext:
.data
enddata:
.bss
endbss:

boot/setup.S,布布扣,bubuko.com

时间: 2024-10-29 03:02:29

boot/setup.S的相关文章

Linux引导启动程序 - boot

主要描述 boot/目录中的三个汇编代码文件,见列表 3-1 所示.正如在前一章中提到的,这三个 文件虽然都是汇编程序,但却使用了两种语法格式.bootsect.s 和 setup.s 采用近似于 Intel 的汇编语言语法,需要使用 Intel  8086 汇编编译器和连接器 as86 和ld86,而 head.s 则使用 GNU 的汇编程序格式,并且运行在保护模式下,需要用 GNU 的 as 进行编译.这是一种 AT&T 语法的汇编语言程序. 使用两种编译器的主要原因是由于对于 Intel 

嵌入式 uboot引导kernel,kernel引导fs【转】

转自:http://www.cnblogs.com/lidabo/p/5383934.html#3639633 1.uboot引导kernel: u-boot中有个bootm命令,它可以引导内存中的应用程序映像(Kernel),bootm命令对应 common/cmd_bootm.c中的do_bootm()函数,此函数实现下面几个功能: 1)读flash中的内核映像文件 2)解压内核 3)校验内核 4)跳到内核执行(调用do_bootm_linux()函数) { 1.Stage1 start.S

Microsoft Corporation 去掉 windows 修改 启动加载 版权

windows 修改 开机界面 boot启动界面 windows 修改 启动加载 版权 windows 系统如何修改开机画面的版权文字"Microsoft Corporation ... ◎Microsoft Corporation Microsoft Corporation 去掉 作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱:[email protected] E-mail: 313134555 @qq.com 通过16进制的编辑器(我用的是winhex)打开winlo

深入分析linux调度机制

一.说明 本文以linux-2.4.10 为例主要分析Linux 进程调度模块中的schedule 函数及其相关的函数.另外相关的前提知识也会说明.默认系统平台是自己的i386 架构的pc. 二.前提知识 在进行schedule 分析之前有必要简单说明一下系统启动过程,内存分配使用等.这样才能自然过渡到schedule 模块. 首先是Linux各个功能模块之间的依赖关系: 可见进程调度是整个内核的核心.但这部分,我想说明的是,我的pc是怎样把操作系统从硬盘装载到内存中,并启动进程调度模块的.然后

linux 内核升级2 转

linux内核升级 一.Linux内核概览 Linux是一个一体化内核(monolithic kernel)系统. 设备驱动程序可以完全访问硬件. Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载. 1. linux内核 linux操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件. 一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割. 计算机的硬件,含有外围设备.处理器.内存.硬盘和其他的电子设

内核升级2.6.11-3.0.2

-------------------------------------------------------- http://blog.chinaunix.net/uid-26000296-id-4208526.html linux内核升级图文攻略 2014-04-14 12:05:44 一.Linux内核概览Linux是一个一体化内核(monolithic kernel)系统.设备驱动程序可以完全访问硬件.Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系

tools/build.c

/* *  linux/tools/build.c * *  Copyright (C) 1991, 1992  Linus Torvalds *//* * This file builds a disk-image from three different files: * * - bootsect: max 510 bytes of 8086 machine code, loads the rest * - setup: max 4 sectors of 8086 machine code,

Linux内核完全注释之编程语言和环境(一)

as86汇编器 1.来源与对于linux的用途 as86来源minix-386开发的intel 8086.80386汇编编译程序和链接程序,他主要为linux创建16位的启动引导扇区程序boot/bootsect.s和实模式下初始设置程序boot/setup.s的二进制执行代码. 2.语法 as86语法是基于minix系统的汇编 语言语法,与gnu as汇编器的语法不兼容 汇编的命令基本格式: as [option] -o objfile srcfile 3.语句 汇编语言程序srcfile是一

Linux 中断详解 【转】

转自:http://blog.csdn.net/tiangwan2011/article/details/7891818 原文地址 http://www.yesky.com/20010813/192117.shtml 方法之三:以数据结构为基点,触类旁通 结构化程序设计思想认为:程序 =数据结构 +算法.数据结构体现了整个系统的构架,所以数据结构通常都是代码分析的很好的着手点,对Linux内核分析尤其如此.比如,把进程控制块结构分析清楚 了,就对进程有了基本的把握:再比如,把页目录结构和页表结构