算法导论第7章快速排序

快速排序

#include <stdint.h>
#include <iostream>
// QUICKSORT(A, p, r)
// if p < r
//     q = PARTITION(A, p, r)
//     QUICKSORT(A, p, q - 1)
//     QUICKSORT(A, q + 1, r)
// To sort an entire array, the initial call is QUICKSORT(A, 1, A.length)

// PARTITION(A, p, r)
// x = A[r]
// i = p - 1
// for j = p to r - 1
//     if A[j] <= x
//         i = i + 1
//         exchange A[i + 1] with A[r]
// exchange a[i + 1] with A[r]
// return i + 1

void swap(int64_t* A, uint64_t i, uint64_t j)
{
    int64_t tmp = A[i];
    A[i] = A[j];
    A[j] = tmp;
}

int64_t partition(int64_t* A, int64_t p, int64_t r)
{
    int64_t x = A[r];
    int64_t i = p - 1;
    for (int64_t j = p; j < r; j++)
    {
        if (A[j] <= x)
        {
            i++;
            swap(A, i, j);
        }
    }
    swap(A, i + 1, r);
    return i;
}

void quicksort(int64_t* A, int64_t p, int64_t r)
{
    if (p < r)
    {
        int64_t q = partition(A, p, r);
        quicksort(A, p, q - 1);
        quicksort(A, q + 1, r);
    }
}

void print_array(int64_t* A, int64_t n)
{
    std::cout << "print array" << std::endl;
    for (int64_t i = 0; i < n; i++)
    {
        std::cout << A[i] << " ";
    }
    std::cout << std::endl;
}

#include "quicksort.h"

int main()
{
    int64_t array[] = { 2, 8, 7, 1, 3, 5, 6, 4 };
    print_array(array, 8);
    quicksort(array, 0, 7);
    print_array(array, 8);
    getchar();
    return 0;
}

快速排序

时间: 2024-10-12 07:34:04

算法导论第7章快速排序的相关文章

算法导论 第7章 快速排序

快速排序在最坏情况下的时间复杂度为O(n^2),虽然在最坏情况下运行时间比较差,但是快速排序通常是用于排序的最佳选择,因为其平均性能相当好,期望的运行时间为O(nlgn),且在O(nlgn)的记号中隐含的常数因子很小. 快速排序和合并排序有相似之处,都是需要划分序列,在合并排序中,划分的过程很简单,直接选择元素序列的中间位划分位置,排序是在合并的过程中实现的,所以合并排序的合并过程很重要:相比合并排序,快速排序就没有合并的过程,只有划分,快速排序的划分过程很重要,排序是在划分的过程中实现的. /

算法导论第七章快速排序

一.快速排序概述 关于快速排序,我之前写过两篇文章,一篇是写VC库中的快排函数,另一篇是写了快排的三种实现方法.现在再一次看算法导论,发现对快速排序又有了些新的认识,总结如下: (1).快速排序最坏情况下的时间复杂度为O(n^2),虽然最坏情况下性能较差,但快排在实际应用中是最佳选择.原因在于:其平均性能较好,为O(nlgn),且O(nlgn)记号中的常数因子较小,而且是稳定排序. (2).快速排序的思想和合并排序一样,即分治.快排排序的分治思想体现在: a.首先从待排序的数中选择一个作为基数,

算法导论 第七章 快速排序(python)

用的最多的排序 平均性能:O(nlogn){随机化nlogn} 原地址排序 稳定性:不稳定 思想:分治 (切分左右) 学习方式:自己在纸上走一遍   def PARTITION(A,p,r): x = A[r] # 锚点 主元{大于它放一边,小于的放另一边} i = p - 1 for j in range(p,r): if A[j] <= x: i += 1 A[i],A[j] = A[j],A[i] A[i+1],A[r] = A[r],A[i+1] return i + 1 def QUI

算法导论第7章___快速排序

快速排序本质上是插入排序,但是它在这个基础上增强了算法. 下面我们来分析一下快速排序: 有了前面的分析基础,我们在来看排序算法也就容易多了. public class Quick_Sort { private void quick_Sort(int []A,int left,int right){ if(left<right){ //划区比较,这个partition 第一次!得到的就是我们刚才说的2. int partition=partition(A, left, right); //实现第一

算法导论 第8章 线性时间排序

合并排序和堆排序的时间复杂度为O(nlgn),插入排序和冒泡排序的时间复杂度为O(n^2),快速排序的时间复杂度在平均情况下是O(nlgn),这些排序算法都是通过对元素进行相互比较从而确定顺序的,因此都叫比较排序. 比较排序可以看做是决策树(一个满二叉树),因为每一次比较都是一个分支.n个元素的序列,其排序的结果有 n! 种可能(n个元素的全排),所以这个决策树有 n! 个叶子结点,假设树的高度为h,则有:n! <= 2^h,所以h >= lg(n!) = Ω(nlgn).一次比较排序就是从决

算法导论 第9章 中位数和顺序统计学

/* * 算法导论 第九章 中位数和顺序统计学 * 线性时间选择元素 */ #include <iostream> #include <ctime> using namespace std; int minimum(int *arr, int len); int randomizedSelect(int *arr, int p, int r, int i); int randomizedPartition(int *arr, int p, int r); void exchange

算法导论 第13章 红黑树

二叉查找树的基本操作包括搜索.插入.删除.取最大和最小值等都能够在O(h)时间复杂度内实现,因此能在期望时间O(lgn)下实现,但是二叉查找树的平衡性在这些操作中并没有得到维护,因此其高度可能会变得很高,当其高度较高时,而二叉查找树的性能就未必比链表好了,所以二叉查找树的集合操作是期望时间O(lgn),最坏情况下为O(n). 红黑树也是一种二叉查找树,它拥有二叉查找树的性质,同时红黑树还有其它一些特殊性质,这使得红黑树的动态集合基本操作在最坏情况下也为O(lgn),红黑树通过给节点增加颜色和其它

算法导论 第6章 堆排序

堆数据结构实际上是一种数组对象,是以数组的形式存储的,但是它可以被视为一颗完全二叉树,因此又叫二叉堆.堆分为以下两种类型: 大顶堆:父结点的值不小于其子结点的值,堆顶元素最大 小顶堆:父结点的值不大于其子结点的值,堆顶元素最小 堆排序的时间复杂度跟合并排序一样,都是O(nlgn),但是合并排序不是原地排序(原地排序:在排序过程中,只有常数个元素是保存在数组以外的空间),合并排序的所有元素都被拷贝到另外的数组空间中去,而堆排序是一个原地排序算法. 1.在堆排序中,我们通常使用大顶堆来实现,由于堆在

算法导论 第6章 堆排序(简单选择排序、堆排序)

堆数据结构实际上是一种数组对象,是以数组的形式存储的,可是它能够被视为一颗全然二叉树,因此又叫二叉堆.堆分为下面两种类型: 大顶堆:父结点的值不小于其子结点的值,堆顶元素最大 小顶堆:父结点的值不大于其子结点的值,堆顶元素最小 堆排序的时间复杂度跟合并排序一样,都是O(nlgn),可是合并排序不是原地排序(原地排序:在排序过程中,仅仅有常数个元素是保存在数组以外的空间),合并排序的全部元素都被复制到另外的数组空间中去,而堆排序是一个原地排序算法. 1.在堆排序中,我们通常使用大顶堆来实现,因为堆