RT-thread提供了组件化功能,具体实现是在components/init文件夹下components.c文件中实现的。应用组件化功能首先在rtconfig.h中添加宏定义#define RT_USING_COMPONENTS_INIT;若需要启用调试模式,则还要添加#define RT_DEBUG_INIT 1。
void rt_components_board_init(void) { #ifndef _MSC_VER #if RT_DEBUG_INIT //启用初始化调试模式,主要目的为将各个组件初始化的状态通过串口打印到PC端(在rtconfig.h中宏定义为1) int result; const struct rt_init_desc *desc; //rt_init_desc是在rtdef.h中定义的结构体类型 for (desc = &__rt_init_desc_rti_start; desc < &__rt_init_desc_rti_board_end; desc ++) { rt_kprintf("initialize %s", desc->fn_name); result = desc->fn(); rt_kprintf(":%d done\n", result); } #else const init_fn_t *fn_ptr; for (fn_ptr = &__rt_init_rti_start; fn_ptr < &__rt_init_rti_board_end; fn_ptr++) { (*fn_ptr)(); } #endif #endif }
void rt_components_init(void) { #ifndef _MSC_VER #if RT_DEBUG_INIT //启用初始化调试模式 int result; const struct rt_init_desc *desc; //rt_init_desc为在rtdef.h中定义的结构体类型,这里定义了指向该结构体类型的指针变量 rt_kprintf("do components intialization.\n"); for (desc = &__rt_init_desc_rti_board_end; desc < &__rt_init_desc_rti_end; desc ++) //注意这里的 & 符号 { rt_kprintf("initialize %s", desc->fn_name); result = desc->fn(); rt_kprintf(":%d done\n", result); } #else const init_fn_t *fn_ptr; //定义指向该函数类型的指针,函数指针变量fn_ptr指向的是初始化函数首地址,fn_ptr本身并不代表初始化函数首地址 for (fn_ptr = &__rt_init_rti_board_end; fn_ptr < &__rt_init_rti_end; fn_ptr ++) //注意这里的 & 符号 { (*fn_ptr)(); //从函数指针中取出初始化函数首地址(函数名)并进行初始化 } #endif #else #ifdef RT_USING_MODULE rt_system_module_init(); #endif #ifdef RT_USING_FINSH /* initialize finsh */ finsh_system_init(); finsh_set_device(RT_CONSOLE_DEVICE_NAME); #endif #ifdef RT_USING_LWIP /* initialize lwip stack */ /* register ethernetif device */ eth_system_device_init(); /* initialize lwip system */ lwip_system_init(); rt_kprintf("TCP/IP initialized!\n"); #endif #ifdef RT_USING_DFS /* initialize the device file system */ dfs_init(); #ifdef RT_USING_DFS_ELMFAT /* initialize the elm chan FatFS file system*/ elm_init(); #endif #if defined(RT_USING_DFS_NFS) && defined(RT_USING_LWIP) /* initialize NFSv3 client file system */ nfs_init(); #endif #ifdef RT_USING_DFS_YAFFS2 dfs_yaffs2_init(); #endif #ifdef RT_USING_DFS_UFFS dfs_uffs_init(); #endif #ifdef RT_USING_DFS_JFFS2 dfs_jffs2_init(); #endif #ifdef RT_USING_DFS_ROMFS dfs_romfs_init(); #endif #ifdef RT_USING_DFS_RAMFS dfs_ramfs_init(); #endif #ifdef RT_USING_DFS_DEVFS devfs_init(); #endif #endif /* end of RT_USING_DFS */ #ifdef RT_USING_NEWLIB libc_system_init(RT_CONSOLE_DEVICE_NAME); #else /* the pthread system initialization will be initiallized in libc */ #ifdef RT_USING_PTHREADS pthread_system_init(); #endif #endif #ifdef RT_USING_RTGUI rtgui_system_server_init(); #endif #ifdef RT_USING_USB_HOST rt_usb_host_init(); #endif #endif }
上面代码红色粗体是组件初始化的入口,是一个函数指针。init_fn_t 的定义在rtdef.h中,如下所示:
/* initialization export */ #ifdef RT_USING_COMPONENTS_INIT //在rtconfig.h中进行宏定义,则启用RT-thread的组件初始化功能 typedef int (*init_fn_t)(void); //对指向int ()(void)函数类型的指针类型取别名init_fn_t。 利用这个别名可定义指向该函数类型的指针,也可用于直接定义该类型的函数名 #ifdef _MSC_VER /* we do not support MS VC++ compiler *///这里没有采用microsoft VC++ complier #define INIT_EXPORT(fn, level) #else #if RT_DEBUG_INIT //启用初始化调试模式 struct rt_init_desc { const char* fn_name; const init_fn_t fn; //这里定义的fn并不是函数指针,而是直接定义函数名 }; #define INIT_EXPORT(fn, level) const char __rti_##fn##_name[] = #fn; \ //C语言中#连接符是把传递过来的参数当成字符串进行替代 const struct rt_init_desc __rt_init_desc_##fn SECTION(".rti_fn."level) = \ //定义结构体变量__rt_init_desc_##fn { __rti_##fn##_name, fn}; #else #define INIT_EXPORT(fn, level) const init_fn_t __rt_init_##fn SECTION(".rti_fn."level) = fn //这里定义的__rt_init_##fn并不是函数指针,而是直接定义函数名 #endif #endif #else #define INIT_EXPORT(fn, level) #endif /* board init routines will be called in board_init() function */ #define INIT_BOARD_EXPORT(fn) INIT_EXPORT(fn, "1") /* device/component/fs/app init routines will be called in init_thread */ /* device initialization */ #define INIT_DEVICE_EXPORT(fn) INIT_EXPORT(fn, "2") /* components initialization (dfs, lwip, ...) */ #define INIT_COMPONENT_EXPORT(fn) INIT_EXPORT(fn, "3") /* file system initialization (dfs-elm, dfs-rom, ...) */ #define INIT_FS_EXPORT(fn) INIT_EXPORT(fn, "4") /* environment initialization (mount disk, ...) */ #define INIT_ENV_EXPORT(fn) INIT_EXPORT(fn, "5") /* appliation initialization (rtgui application etc ...) */ #define INIT_APP_EXPORT(fn) INIT_EXPORT(fn, "6")
其中typdef int (*init_fn_t)(void)的意思是定义init_fn_t为指向函数的指针类型,该函数返回int类型值。这样一来,我们对(*init_fn_t)()的意思就清楚了。
INIT_EXPOT(fn,level) 的表达式是const init_fn_t __rt_init_##fn SECTION(".rti_fn."level) = fn,其中##连词符。
## 连接符号由两个井号组成,其功能是在带参数的宏定义中将两个子串(token)联接起来,从而形成一个新的子串。但它不可以是第一个或者最后一个子串。所谓的子串(token)就是指编译器能够识别的最小语法单元。具体的定义在编译原理里有详尽的解释,但不知道也无所谓。同时值得注意的是#连接符是把传递过来的参数当成字符串进行替代。
SECTION的定义为:
#define SECTION(x) __attribute__((section(x)))
RealView 编译工具 编译器参考指南中给出了下面的解释:
__attribute__((section("name")))
通常,ARM 编译器将它生成的对象放在节中,如 data
和 bss
。但是,您可能需要使用其他数据节,或者希望变量出现在特殊节中,例如,便于映射到特殊硬件。section
属性指定变量必须放在特定数据节中。如果使用 section
属性,则将只读变量放在 RO 数据节中,而将读写变量放在 RW 数据节中,除非您使用 zero_init
属性。在这种情况下,变量被放在 ZI 节中。到此,意思已经很明了了,编译器可以根据对section("name")中的name指定,可以将它生成的数据放到特定的数据节中。
类似的这样的方式,Linux也提供了一些借鉴,把一个函数的地址(注意是函数地址,而不是函数本身)输出到一个独立的section中,同时按照一定顺序进行排列,例如:
.rti_fn.0
.rti_fn.1
.rti_fn.2
...
.rti_fn.7
这样几个section(这样几个不同的section也给出了排列的顺序)。同时把.rti_fn.0和.rti_fn.7保留给系统使用,分别定义出两个桩放置在这两个点上。
也可以按照RT-Thread的形式定义简化的宏:
typedef int (*init_fn_t)(void);
#define INIT_EXPORT(fn, level) \
const init_fn_t __rt_init_##fn SECTION(".rti_fn."level) = fn
#define INIT_BOARD_EXPORT(fn) INIT_EXPORT(fn, "1")
#define INIT_CPU_EXPORT(fn) INIT_EXPORT(fn, "2")
#define INIT_DEVICE_EXPORT(fn) INIT_EXPORT(fn, "3")
#define INIT_COMPONENT_EXPORT(fn) INIT_EXPORT(fn, "4")
#define INIT_FS_EXPORT(fn) INIT_EXPORT(fn, "5")
#define INIT_APP_EXPORT(fn) INIT_EXPORT(fn, "6")
INIT_EXPORT宏用于输出一个函数到初始化序列中,相应的可以定义一些更简化的宏。
这样两个桩可以定义成:
static int rti_start(void)
{
return 0;
}
INIT_EXPORT(rti_start, "0");
static int rti_end(void)
{
return 0;
}
INIT_EXPORT(rti_end,"7");
根据这两个桩的位置,简化的rt_components_init()函数就可以变成:
void rt_components_init(void)
{
const init_fn_t* fn_ptr;
for (fn_ptr = &__rt_init_rti_start; fn_ptr < &__rt_init_rti_end; )
{
(*fn_ptr)();
fn_ptr ++;
}
}
事实上,aozima做了工程测试得到了验证。工程编译后,从map文件找到相关部分内容:
InitFuncSym$$Base 0x00000e18 Number 0init_1.o(InitFuncSym)
__rt_init_init_1 0x00000e18 Data 4init_1.o(InitFuncSym)
__rt_init_init_2 0x00000e1c Data 4init_2.o(InitFuncSym)
__rt_init_init_3 0x00000e20 Data 4init_3.o(InitFuncSym)
__rt_init_init_4 0x00000e24 Data 4init_4.o(InitFuncSym)
__rt_init_init_5 0x00000e28 Data 4init_5.o(InitFuncSym)
__rt_init_init_6 0x00000e2c Data 4init_6.o(InitFuncSym)
InitFuncSym$$Limit 0x00000e30 Number 0init_6.o(InitFuncSym)
尽管数据存放在不同的文件,但从这里这可以看到是空间连续分配的。
总之,通过定义
#define INIT_EXPORT(fn, level) \
const init_fn_t __rt_init_##fn SECTION(".rti_fn."level) = fn
可以系统各部分的组件通过INIT_EXPORT(fn,level)放到一个特定代码段当中,简言之,当我们要初始化某个组件时,定义完这个初始化函数后,根据上面宏定义的注释,在其下面接着放一条INIT_XXX_EXPORT(fn)就可以了。相当于一个指定到特定代码段的隐形调用,而且要清楚这个段中是不同组件初始化函数的入口地址,例如:
int my_init_fun(void) {... ...}
INIT_XXX_EXPORT(my_init_fun)
例如在finsh组件shell.c中:
int finsh_system_init(void) {......}
INIT_COMPONENT_EXPORT(finsh_system_init);
注意:定义的初始化函数必须满足输入参数类型为void,返回类型为int,即为typedef int (*init_fn_t)(void)中定义的函数类型。