Description
Fermat‘s theorem states that for any prime number p and for any integer
a > 1, ap == a (mod p). That is, if we raise a to the
pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of
p, known as base-a pseudoprimes, have this property for some
a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all
a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not
p is a base-a pseudoprime.
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing
p and a. For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Input
Output
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
HINT
题意:
给定p,a两个数字2<=p<=1000000000,1<a<p;若p为素数,则输出no,否则(若a^p%p=a 输出yes,否则输出no)
代码如下:
#include <iostream> #include <cmath> using namespace std; bool isPrime(long long n) { long long i; for (i=2;i<=sqrt(n);i++) { if (n%i==0) return false; } return true; } long long mod(long long a,long long n,long long m) { long long d=1,t=a; while (n>0) //通过n来求a^p%p; { if (n%2==1) //当n为奇数时先乘一个a并%m; d=(d*t)%m; n/=2; t=(t*t)%m; //缩短计算过程 } return d; } int main() { long long a,p; while (cin>>p>>a) { if (a==0&&p==0) break; if (isPrime(p)) cout<<"no"<<endl; else { if (a==mod(a,p,p)) cout<<"yes"<<endl; else cout<<"no"<<endl; } } return 0; }
运行结果:
这道题是去年新秀赛的一道英语题,本来昨天晚上就应该完成的,但昨天晚上下雨,为了从机房尽早赶回宿舍测试没通过就没再去考虑它了。今天念了它一天。和同学一交流才发现,英语果然还是硬伤,用上了百度翻译结果还是弄错了题意,p是素数的话应该是输出no,我却认为是输出yes。。。心好累。。。