k-means聚类分割

算法的思想是初始选取M个种子点,将周围点的特征和种子点特征进行距离的测定,距离最小的点和该种子点归为一类。则可以分为M个类别,计算这些类别特征的质心作为新的种子点,再次分类,如此迭代n次后的结果便是聚类分割的结果。

K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。

在聚类问题中,给我们的训练样本是,每个,没有了y。

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:


1、 随机选取k个聚类质心点(cluster centroids)为

2、 重复下面过程直到收敛 {

对于每一个样例i,计算其应该属于的类

对于每一个类j,重新计算该类的质心

}

K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:

J函数表示每个样本点到其质心的距离平方和。K-means是要将J调整到最小。假设当前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,和c也同时收敛。(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。

由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k-means达到的局部最优已经满足需求。但如果你怕陷入局部最优,那么可以选取不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。

下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。这些问题在以后的篇章里回答。

这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例对应隐含变量也就是最佳类别。最开始可以随便指定一个给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的(前面提到的其他未知参数),然而此时发现,可以有更好的(质心与样例距离最小的类别)指定给样例,那么得到重新调整,上述过程就开始重复了,直到没有更好的指定。这样从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。

#include "opencv/cxcore.h"

#include "opencv/highgui.h"

#include<opencv2\opencv.hpp>

#include <iostream>

using namespace std;

//Set element in Matrix

void SetMatElem(CvMat *mat, int row, int col, int channel, int val)

{

((float*)(mat->data.ptr+mat->step*row))[col*mat->step+channel]= val;

}

class Color

{

int num;

public:

int b, g, r;

Color(){ b= 0; g= 0; r=0;num=0;}

Color(int x, int y, int z) { b=x; g= y; r =z; num=0;}

void Add( int x, int y, int z)//Calcuate average color

{

b=( b*num+x)/(num+1);

g=( g*num+y)/(num+1);

r= (r*num+z)/(num+1);

++num;

cout << num<<endl;

}

};

int main( int argc, char** argv )

{

IplImage *src,*dst;

int cluster_num;

//Load image

if (argc==2){

src= cvLoadImage(argv[1]);

}

else{

src= cvLoadImage("nature4.jpg");

}

if( src == 0) { cout<<"Cannot open the file!"; return(1000);}

//Read input, get the number of clusters

cout<<"Please input cluster number:";

cin>>cluster_num;

Color *color_tab= new Color[cluster_num]();

CvMat *sample = cvCreateMat(src->height*src->width, 1, CV_32FC(5));

CvMat *cluster = cvCreateMat(src->height*src->width, 1, CV_32SC1);

//Initalize Matrix for 5-D vector to store each pixel info.in image

for( int i=0; i<src->height ;i++){ //row

for( int j=0; j<src->width; j++){
//col

long int index= i*src->width+j;

SetMatElem(sample,index,0,0,i);

SetMatElem(sample,index,0,1,j);

SetMatElem(sample,index,0,2,CV_IMAGE_ELEM(src,uchar,i,j*3));

SetMatElem(sample,index,0,3,CV_IMAGE_ELEM(src,uchar,i,j*3+1));

SetMatElem(sample,index,0,4,CV_IMAGE_ELEM(src,uchar,i,j*3+2));

}

}

//Do KMeans to Matrix sample, and store result in Matrix cluster

cvKMeans2(sample, cluster_num, cluster,

cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 10 ));

dst = cvCreateImage(cvGetSize(src),8,3);

cvZero(dst);

//Visit each pixel in original image, calculate average color in each clusters

//and store result in Table color_tab

for(int i=0; i<dst->height; i++){

for( int j=0; j<dst->width; j++){

long int index= i* dst->width+j;

int cluster_idx= cluster->data.i[index];

int x= CV_IMAGE_ELEM(src,uchar, i, j*3);

int y=  CV_IMAGE_ELEM(src,uchar, i, j*3+1);

int z= CV_IMAGE_ELEM(src,uchar, i, j*3+2);

color_tab[cluster_idx].Add(x,y,z);

}

}

//Assign average color in cluster to destination image

for(int i=0; i<dst->height; i++){

for( int j=0; j<dst->width; j++){

long int index= i* dst->width+j;

int cluster_idx= cluster->data.i[index];

CV_IMAGE_ELEM(dst,uchar, i, j*3) = color_tab[cluster_idx].b;

CV_IMAGE_ELEM(dst,uchar, i, j*3+1) = color_tab[cluster_idx].g;

CV_IMAGE_ELEM(dst,uchar, i, j*3+2) = color_tab[cluster_idx].r;

}

}

//Show image

cvNamedWindow("K-means Segmentation Result");

cvShowImage("K-means Segmentation Result", dst);

cv::Mat dst1(dst->width,dst->height,CV_8UC1);

for (int i = 0; i<dst->height; i++){

for (int j = 0; j<dst->width; j++){

long int index = i* dst->width + j;

int cluster_idx = cluster->data.i[index];

dst1.at<uchar>(i, j) = cluster_idx*50;

}

}

cv::imshow("dst1", dst1);

cvWaitKey(-1);

cvReleaseMat(&sample);

cvReleaseMat(&cluster);

cvReleaseImage(&src);

cvReleaseImage(&dst);

}

时间: 2024-10-07 14:28:45

k-means聚类分割的相关文章

k means聚类过程

k-means是一种非监督 (从下图0 当中我们可以看到训练数据并没有标签标注类别)的聚类算法 0.initial 1.select centroids randomly 2.assign points 3.update centroids 4.reassign points 5.update centroids 6.reassign points 7.iteration reference: https://www.naftaliharris.com/blog/visualizing-k-me

k均值聚类

目录 一.k均值简介 二.应用简介 三.算法 四.选择合适的K 五.具体实例 一.k均值简介 K均值聚类是一种无监督学习,对未标记的数据(即没有定义类别或组的数据)进行分类. 该算法的目标是在数据中找到由变量K标记的组.该算法迭代地工作基于所提供的特征,将每个数据点分配给K个组中的一个. 基于特征相似性对数据点进行聚类. K均值聚类算法的结果是: 1.K簇的质心,可用于标记新数据 2.训练数据的标签(每个数据点分配给一个集群) 二.应用简介 K均值聚类算法用于查找未在数据中明确标记的组.这可用于

机器学习--k均值聚类(k-means)算法

一.基本原理 分类是指分类器根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类.分类被称为监督学习.如果训练集的样本没有标注类别,那么就需要用到聚类.聚类是把相似的样本聚成一类,这种相似性通常以距离来度量.聚类被称为无监督学习. 聚类是指根据"物以类聚"的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道

第十篇:K均值聚类(KMeans)

前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类结果描述:4. 将聚类结果图形化展示:5. 选择最优center并最终确定聚类方案:6. 图形化展示不同方案效果并提交分析报表. 人口出生/死亡率聚类分析 - K均值聚类 1. 载入并了解数据集 1.1 从网上下载一份txt格式的关于人口出生率统计的数据(countries.txt).其内容大致如下

机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可): 2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离:把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离: 3 根据二维数组保存的数据,重新计算每个聚簇新的质心: 4 迭代2 和 3,直到收敛

R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法

基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成聚簇 随机选择一个非中心点,用它代替某个现有的中心点,计算这个代换的总代价S 如果S<0,则用代替,形成新的k个中心点集合 重复2,直至中心点集合不发生变化 K中心法的实现:PAM PAM使用离差平方和来计算成本S(类似于ward距离的计算) R语言的cluster包实现了PAM K中心法的优点:对于&

ML: 聚类算法R包-K中心点聚类

K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在 K-medoids算法中,我们将从当前cluster 中选取这样一个点--它到其他所有(当前cluster中的)点的距离之和最小--作为中心点.K-medodis算法不容易受到那些由于误差之类的原因产生的脏数据的影响,但计算量显然要比K-means要大,一般只适合小数据量. K-medoids

k-均值聚类算法;二分k均值聚类算法

根据<机器学习实战>一书第十章学习k均值聚类算法和二分k均值聚类算法,自己把代码边敲边理解了一下,修正了一些原书中代码的细微差错.目前代码有时会出现如下4种报错信息,这有待继续探究和完善. 报错信息: Warning (from warnings module): File "F:\Python2.7.6\lib\site-packages\numpy\core\_methods.py", line 55 warnings.warn("Mean of empty

机器学习实战笔记-利用K均值聚类算法对未标注数据分组

聚类是一种无监督的学习,它将相似的对象归到同一个簇中.它有点像全自动分类.聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好 簇识别给出聚类结果的含义.假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么.聚类与分类的最大不同在于,分类的目标事先巳知,而聚类则不一样.因为其产生的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification ). 聚类分析试图将相似对象归人同一簇,将不相似对象归到不