如何入门深度学习?

Tel-Aviv大学深度学习实验室的Ofir同学写了一篇如何入门深度学习的文章,顺手翻译一下,造福生物信息狗。

人工神经网络最近在很多领域(例如面部识别物体发现围棋)都取得了突破,深度学习变得炙手可热。如果你对深度学习感兴趣的话,这篇文章是个不错的起点。

如果你学过线性代数,微积分,概率论和编程,我建议你从斯坦福大学的CS231n课程开始。这门课内容广泛,写得很高。可每次课的幻灯片都可以下载,虽然官方网站删除了配套的视频,但是你很容易就能在网上搜索到。

如果你没有学过那些数学课,网上也有很多免费的学习材料可以用来学习必要的数学知识。Gilbert Stange的线性代数课程很适合入门。对于其他科目,edX上有MIT的微积分概率论课程。

如果想学习更多关于机器学习的东西Andrew Ng在Coursera上的机器学习课程是最佳入门选择。除此之外,Yaser Abu-Mostafa的机器学习课程更关注理论,但也很适合初学者。学习深度学习并不要求掌握机器学习,但如果能有一些了解的话还是很有帮助的。此外,学习经典的机器学习,而不仅仅是深度学习,能让我们有深厚的理论背景————因为,深度学习并不总是最佳方案。

CS231n并不是在线深度学习课程的唯一选择。Geoffrey Hinton的Coursera课程『用于机器学习的神经网络』(Neural Nerworks for Machine Learning)涵盖了诸多内容,Hugo Larochelle的『神经网络课』(Neural Networks Class)也是如此。这两门课都有视频材料。Nando de Freitas的在线课程也带有视频、幻灯片和家庭作业。

如果你不喜欢看视频,而是更喜欢阅读《神经网络和深度学习》(Neural Networks and Deep Learning)是一本为深度学习的初学者撰写的在线免费书。《深度学习之书》(The Deep Learning Book)也是一本很赞的免费书,不过内容略高阶一点。

有了基础知识之后,还可以往这些方面发展:

深度学习框架:深度学习框架很多,最有名的三个应该是Tensorflow(谷歌),Torch(Facebook)和Theano(MILA)。三个都很牛逼,如果一定要推荐一个的话,我建议初学者去试试Tensorflow。Tensorflow的教程很不错。

训练神经网络几乎离不开GPU。虽然不是必须的,但GPU可以帮你更快的完成工作。NVIDIA显卡是工业标准,大部分研究实验室都在用一千美元的显卡,很少有便宜货能搞定这个事情。另一个成本更低的办法是从诸如亚马逊之类的云计算服务供应商那租一个带GPU的实例(这里有短教程)。

祝你好运!

2016年6月26日

原文地址:http://ofir.io/How-to-Start-Learning-Deep-Learning/

作者:陈钢
链接:https://zhuanlan.zhihu.com/p/21475898
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。aa

时间: 2024-12-30 02:50:26

如何入门深度学习?的相关文章

问题集录--新手入门深度学习,选择TensorFlow 好吗?

新手入门深度学习,选择 TensorFlow 有哪些益处? 佟达:首先,对于新手来说,TensorFlow的环境配置包装得真心非常好.相较之下,安装Caffe要痛苦的多,如果还要再CUDA环境下配合OpenCV使用,对于新手来说,基本上不折腾个几天是很难搞定的. 其次,基于TensorFlow的教学资源非常多,中英文的都有,这对于新手也是非常有帮助的.Google做社区非常有一套,在中国有专门的一群人,会在第一时间把Google的开发者相关的进展翻译成中文. 另外,由于有Google背书,Ten

(转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean

深度学习(四)转--入门深度学习的一些开源代码

原文作者:aircraft 原文链接: 没错这篇又是转发的,因为觉得学习深度学习难免要从别人的代码开始,所以就转发了.不过转发的时候没找到原作者是谁,所以原作者看到不要打我-------QAQ 语义分割: Awesome Semantic Segmentation https://github.com/mrgloom/awesome-semantic-segmentation Semantic Segmentation Algorithms Implemented in PyTorch http

深度学习入门:基于Python的理论与实现 高清中文版PDF电子版下载附源代码

本书特色1.日本深度学习入门经典畅销书,原版上市不足2年印刷已达100 000册.长期位列日亚"人工智能"类图书榜首,超多五星好评.2.使用Python 3,尽量不依赖外部库或工具,从零创建一个深度学习模型.3.示例代码清晰,源代码可下载,需要的运行环境非常简单.读者可以一边读书一边执行程序,简单易上手.4.使用平实的语言,结合直观的插图和具体的例子,将深度学习的原理掰开揉碎讲解,简明易懂.5.使用计算图介绍复杂的误差反向传播法,非常直观.6.相比AI圣经"花书",

「03」机器学习、深度学习该怎样入门?

我本科是个和计算机.数学毫不相关的人文类专业,后来用了大三.大四两年时间,从中学级别的数学捡起,一路自学.实习.读研到现在.我太熟悉入门时候的坑了,直接从一大堆概念.公式.书单入手,谁看谁懵. 所谓入门,绝不是粘课程链接.讲概念定义.有些答案确实解释的非常通俗,但这不叫入门. 古语说入门,就一句话 师傅领进门,修行在个人 所以我不会随便复制粘贴一些高分书目,或者讲讲什么是深度学习.我希望能从一个不一样的角度来回答该如何入门深度学习,希望可以授人与渔,教教大家入门的方法论. 对于自学成分居多.想转

对比学习资料《深度学习入门:基于Python的理论与实现》+《深度学习原理与实践》+《深度学习理论与实战基础篇》电子资料

我认为<深度学习入门:基于Python的理论与实现>电子书代码基本原理,简洁清楚,所用数学基本就是大一水平,适合做第一本入门书. <深度学习入门:基于Python的理论与实现>书代码实现的神经网络全是用numpy,超级适合刚刚入门想了解神经网络,数学不好看公式看不懂的人,看完这本基本就懂深度学习是弄啥子了. 如果连这本都看不懂的话,可以去看<Python神经网络编程>.我个人认为这两本书是最简单直白的方式让人理解神经网络的了. <深度学习原理与实践>电子书代

TensorFlow【机器学习】:如何正确的掌握Google深度学习框架TensorFlow(第二代分布式机器学习系统)?

本文标签:   机器学习 TensorFlow Google深度学习框架 分布式机器学习 唐源 VGG REST   服务器 自 2015 年底开源到如今更快.更灵活.更方便的 1.0 版本正式发布,由 Google 推出的第二代分布式机器学习系统 TensorFlow一直在为我们带来惊喜,一方面是技术层面持续的迭代演进,从分布式版本.服务框架 TensorFlow Serving.上层封装 TF.Learn 到 Windows 支持.JIT 编译器 XLA.动态计算图框架 Fold 等,以及

深度学习实践系列(2)- 搭建notMNIST的深度神经网络

如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti

唐宇迪老师现场剖析深度学习——免费公开课招募啦~~~

           免费公开课具体相关事宜:            地点:QQ群直播 553481374            时间:2016年12月27号晚19:30-21:00(19:30-20:30讲述深度学习.神经网络等,20:30-21:00答疑) 讲师简介: 深度学习领域多年一线实践研究专家,同济大学硕士. 主要研究深度学习领域,计算机视觉,图像识别.精通机器学习,热爱各种开源技术尤其人工智能方向.在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的最新