【算法】最长回文子串 longest palindrome substring

对于字符串S, 要找到它最长的回文子串,能想到的最暴力方法,应该是对于每个元素i-th都向左向右对称搜索,最后用一个数组span 记录下相对应元素i-th为中心的回文子串长度。

那么问题来了:

  1. 这样的方法,对于奇回文子串和偶回文子串的处理不一样,比如所“acbca” 和“acbbca”

  2. 计算冗余,e.g. ”sscssabcccchccccba“中, 自左向右遍历计算的话,会发现, ”abcccchccccba“是对称的,而这个回文字符串里又左右对称分别包含了两个回文子字符”cccc“和”cccc“, 在对第二个”cccc“字符串遍历的时候,其实可以利用到”abcccchccccba“的对称性来直接赋值,而不用再次计算

于是,引出了Manacher‘s 算法:

  1. 为了可以对奇偶回文字符串不加区分地处理,对输入字符串增加边界元素(输入字符串S长度为N -> S2长度为2*N+1):e.g. ”aabbbcc“ -> "#a#a#b#b#b#c#c#" , ”aabbcc“ -> "#a#a#b#b#c#c#"

  2. 对于S2字符串,自左向右,每个字符逐个计算和处理

    1)用span[maxInputStringLength*2+1]数组来记录每个元素i-th为中心的回文字符串长度 : 初始化 span[0] = 0

    2)用center 和 rightBoundary 来记录上一个已知的回文字符串中心index和最右边界index :初始化 center = 0, rightBoundary = 0

    3)用 i 表示当前处理的元素, i2 表示 以 center 为中心的 center左侧 i 对称 元素下标 : i2 = center - (i - center)= center * 2 - i

    4)加上已知的回文子串信息之后,假设已经处理了S2[0, i-1]范围的元素,那么已知的回文子串中心center 必然属于[0, i-1]区间, 但是对于rightBoundary和i的关系可以有三种情况:

      a)当前处理的元素(index = i)以 center为中心,对称的元素(index = i2)上有,span[i2] < rightBoundary - i - 1, 表示i2点的回文字符串最左端不会超过leftBoundary的长度,利用了已知的回文字符串信息辅助说明,当前以i为中心的回文字符串将和i2完全对称,span[i] = span[i2]

      

      b)当前处理的元素(index = i)以 center为中心,对称的元素(index = i2)上有,span[i2] >= rightBoundary - i - 1, 表示 i2 点的回文字符串最左端已经超过了leftBoundary的范围,不能利用已知回文字符串直接赋值,但还是可以利用对称性,使得对称搜索从rightBoundary处开始,这样可以减少计算

      

      c)当前处理的元素(index = i)并不在已知回文串的记录范文内,那么久没有辅助信息,需要从i元素的左右对称搜索,得到span[i]的值

      

    5)最后要更新center和rightBoundary的值,使得已知回文字符串的覆盖范围右移,这样可以持续辅助搜索

  

 1 const int maxStringLength = 1000;
 2
 3 string longestPalindrome(string s) {
 4
 5     if (s.empty()) return "";
 6
 7     ///add boundary
 8     string s2;
 9     for (int i = 0; i < s.size(); i++) {
10         s2.push_back(‘#‘);
11         s2.push_back(s[i]);
12     }
13     s2.push_back(‘#‘);
14
15
16     /// setting
17     int span[maxStringLength] = {0};
18     span[0] = 0; // init the first element‘s length of palindrome
19     int center = 0, rightBoundary = 0;
20     int left = 0, right = 0;
21
22     ///traverse
23     for (int i = 1; i < s2.size(); i++) {
24         if (i <= rightBoundary) {
25             int i2 = center * 2 - i;// center - (i - center)
26             if (span[i2] < (rightBoundary - i - 1)) {
27                 span[i] = span[i2];
28                 left = -1;
29             }
30             else {
31                 span[i] = rightBoundary - i;
32                 right = rightBoundary + 1;
33                 left = i * 2 - right; //i - (right - i)
34             }
35         }
36         else {
37             span[i] = 0;
38             left = i - 1;
39             right = i + 1;
40         }
41
42         while (left >= 0 && right < s2.size() && s2[left] == s2[right]) {
43             span[i] ++;
44             left--;
45             right++;
46         }
47
48         if ((i + span[i]) > rightBoundary) {
49             center = i;
50             rightBoundary = i + span[i];
51         }
52     }
53
54     /// find the max span length
55     int maxSubstringCenter = 0, maxSubstringLen = 0;
56     for (int i = 0; i < s2.size(); i++) {
57         if (span[i] > maxSubstringLen) {
58             maxSubstringLen = span[i];
59             maxSubstringCenter = i;
60         }
61     }
62
63     /// remove boundary ‘#‘ from substring
64     string result;
65     for (int i = maxSubstringCenter - maxSubstringLen; i <= maxSubstringCenter + maxSubstringLen; i++) {
66         if (s2[i] != ‘#‘)
67             result.push_back(s2[i]);
68     }
69
70     return result;
71 }

时间: 2024-10-01 03:40:39

【算法】最长回文子串 longest palindrome substring的相关文章

[译]最长回文子串(Longest Palindromic Substring) Part II

[译+改]最长回文子串(Longest Palindromic Substring) Part II 问题:给定字符串S,求S中的最长回文子串. 在上一篇,我们给出了4种算法,其中包括一个O(N2)时间O(1)空间的算法(中心检测法),已经很不错了.本篇将讨论一个O(N)时间O(N)空间的算法,即著名的Manacher算法,并详细说明其时间复杂度为何是O(N). 提示 +BIT祝威+悄悄在此留下版了个权的信息说: 先想想有什么办法能改进中心检测法. 考虑一下最坏的情况.★ 最坏的情况就是各个回文

最长回文子串(Longest Palindromic Substring)-DP问题

问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串,是否是回文串. 则根据回文的规则我们可以知道: 如果s[i] == s[j] 那么是否是回文决定于 dp[i+1][ j - 1] 当 s[i] != s[j] 的时候, dp[i][j] 直接就是 false. 动态规划的进行是按照字符串的长度从1 到 n推进的. DP算法实现: 1 packa

【中等】5-最长回文子串 Longest Palindromic Substring

题目 Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. Example1 输入: "babad" 输出: "bab" 注意: "aba" 也是一个有效答案. Example2 输

LeetCode 5. 最长回文子串 Longest Palindromic Substring

题目: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: "aba"也是一个有效答案. 示例 2: 输入: "cbbd" 输出: "bb"  解法一 遍历字符串,以每个字母为中心,向两边扩散查找,记录当前最长的回文子串的长度和起始位置.结尾位置.时间复杂度O(n^2) 注意: ①当剩下的字符串长度小于当前m

Manacher算法----最长回文子串

题目描述 给定一个字符串,求它的最长回文子串的长度. 分析与解法 最容易想到的办法是枚举所有的子串,分别判断其是否为回文.这个思路初看起来是正确的,但却做了很多无用功,如果一个长的子串包含另一个短一些的子串,那么对子串的回文判断其实是不需要的.同时,奇数和偶数长度还要分别考虑. Manacher算法可以解决上述问题,并在O(n)时间复杂度内求出结果.下面我们来看一下Manacher算法. 首先,为了处理奇偶的问题,在每个字符的两边都插入一个特殊的符号,这样所有的奇数或偶数长度都转换为奇数长度.比

Manacher算法——最长回文子串(O(n))

1 public static int Manacher(String A,int n){ 2 char AA[]=A.toCharArray(); 3 char BB[]=new char[2*n+3]; 4 int k=0; 5 for(int i=1;i<=2*n+1;i=i+2){ 6 BB[i]='#'; 7 if(i+1<=2*n+1)BB[i+1]=AA[k++]; 8 } 9 BB[0]='$';//防止数组越界 10 BB[2*n+2]='&';//防止数组越界 11

[Swift]LeetCode409. 最长回文串 | Longest Palindrome

Given a string which consists of lowercase or uppercase letters, find the length of the longest palindromes that can be built with those letters. This is case sensitive, for example "Aa" is not considered a palindrome here. Note:Assume the lengt

[LeetCode] 5. Longest Palindromic Substring 最长回文子串

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 最长回文子串Longest palindromic substring, 最长回文子串或最长对称因子问题是在一个字符串中查找一个最长连续子串,这个子串

转载:LeetCode:5Longest Palindromic Substring 最长回文子串

本文转自:http://www.cnblogs.com/TenosDoIt/p/3675788.html 题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 求字符串的最长回文子串 算法1:暴