tensorflow迁移学习retrain.py

使用官方的retrain.py文件,默认地址下载不了模型,并且在将下载好的本地模型载入也会出错,下面是另外一个版本的retrain.py文件,可以使用。

github源码:retrain.py

Windows批处理文件:

python retrain.py ^
--bottleneck_dir tmp/bottleneck ^
--how_many_training_steps 200 ^
--model_dir I:/360MoveData/Users/Stark/Desktop/python/tensorflow/inception v3/inception_model/ ^
--output_graph tmp/output_graph.pb ^
--output_labels tmp/output_labels.txt ^
--image_dir train/ ^
--tfhub_module=I:/360MoveData/Users/Stark/Desktop/python/tensorflow/inception v3/inception_model/
pause
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#     http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# ==============================================================================

r"""Simple transfer learning with Inception v3 or Mobilenet models.

With support for TensorBoard.

This example shows how to take a Inception v3 or Mobilenet model trained on

ImageNet images, and train a new top layer that can recognize other classes of

images.

The top layer receives as input a 2048-dimensional vector (1001-dimensional for

Mobilenet) for each image. We train a softmax layer on top of this

representation. Assuming the softmax layer contains N labels, this corresponds

to learning N + 2048*N (or 1001*N)  model parameters corresponding to the

learned biases and weights.

Here‘s an example, which assumes you have a folder containing class-named

subfolders, each full of images for each label. The example folder flower_photos

should have a structure like this:

~/flower_photos/daisy/photo1.jpg

~/flower_photos/daisy/photo2.jpg

...

~/flower_photos/rose/anotherphoto77.jpg

...

~/flower_photos/sunflower/somepicture.jpg

The subfolder names are important, since they define what label is applied to

each image, but the filenames themselves don‘t matter. Once your images are

prepared, you can run the training with a command like this:

```bash

bazel build tensorflow/examples/image_retraining:retrain &&
bazel-bin/tensorflow/examples/image_retraining/retrain
    --image_dir ~/flower_photos

```

Or, if you have a pip installation of tensorflow, `retrain.py` can be run

without bazel:

```bash

python tensorflow/examples/image_retraining/retrain.py
    --image_dir ~/flower_photos

```

You can replace the image_dir argument with any folder containing subfolders of

images. The label for each image is taken from the name of the subfolder it‘s

in.

This produces a new model file that can be loaded and run by any TensorFlow

program, for example the label_image sample code.

By default this script will use the high accuracy, but comparatively large and

slow Inception v3 model architecture. It‘s recommended that you start with this

to validate that you have gathered good training data, but if you want to deploy

on resource-limited platforms, you can try the `--architecture` flag with a

Mobilenet model. For example:

```bash

python tensorflow/examples/image_retraining/retrain.py
    --image_dir ~/flower_photos --architecture mobilenet_1.0_224

```

There are 32 different Mobilenet models to choose from, with a variety of file

size and latency options. The first number can be ‘1.0‘, ‘0.75‘, ‘0.50‘, or

‘0.25‘ to control the size, and the second controls the input image size, either

‘224‘, ‘192‘, ‘160‘, or ‘128‘, with smaller sizes running faster. See

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html

for more information on Mobilenet.

To use with TensorBoard:

By default, this script will log summaries to /tmp/retrain_logs directory

Visualize the summaries with this command:

tensorboard --logdir /tmp/retrain_logs

"""

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import argparse

import collections

from datetime import datetime

import hashlib

import os.path

import random

import re

import sys

import tarfile

import numpy as np

from six.moves import urllib

import tensorflow as tf

from tensorflow.python.framework import graph_util

from tensorflow.python.framework import tensor_shape

from tensorflow.python.platform import gfile

from tensorflow.python.util import compat

FLAGS = None

# These are all parameters that are tied to the particular model architecture

# we‘re using for Inception v3. These include things like tensor names and their

# sizes. If you want to adapt this script to work with another model, you will

# need to update these to reflect the values in the network you‘re using.

MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1  # ~134M

def create_image_lists(image_dir, testing_percentage, validation_percentage):

  """Builds a list of training images from the file system.

  Analyzes the sub folders in the image directory, splits them into stable

  training, testing, and validation sets, and returns a data structure

  describing the lists of images for each label and their paths.

  Args:

    image_dir: String path to a folder containing subfolders of images.

    testing_percentage: Integer percentage of the images to reserve for tests.

    validation_percentage: Integer percentage of images reserved for validation.

  Returns:

    A dictionary containing an entry for each label subfolder, with images split

    into training, testing, and validation sets within each label.

  """

  if not gfile.Exists(image_dir):

    tf.logging.error("Image directory ‘" + image_dir + "‘ not found.")

    return None

  result = collections.OrderedDict()

  sub_dirs = [

    os.path.join(image_dir,item)

    for item in gfile.ListDirectory(image_dir)]

  sub_dirs = sorted(item for item in sub_dirs

                    if gfile.IsDirectory(item))

  for sub_dir in sub_dirs:

    extensions = [‘jpg‘, ‘jpeg‘, ‘JPG‘, ‘JPEG‘]

    file_list = []

    dir_name = os.path.basename(sub_dir)

    if dir_name == image_dir:

      continue

    tf.logging.info("Looking for images in ‘" + dir_name + "‘")

    for extension in extensions:

      file_glob = os.path.join(image_dir, dir_name, ‘*.‘ + extension)

      file_list.extend(gfile.Glob(file_glob))

    if not file_list:

      tf.logging.warning(‘No files found‘)

      continue

    if len(file_list) < 20:

      tf.logging.warning(

          ‘WARNING: Folder has less than 20 images, which may cause issues.‘)

    elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:

      tf.logging.warning(

          ‘WARNING: Folder {} has more than {} images. Some images will ‘

          ‘never be selected.‘.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))

    label_name = re.sub(r‘[^a-z0-9]+‘, ‘ ‘, dir_name.lower())

    training_images = []

    testing_images = []

    validation_images = []

    for file_name in file_list:

      base_name = os.path.basename(file_name)

      # We want to ignore anything after ‘_nohash_‘ in the file name when

      # deciding which set to put an image in, the data set creator has a way of

      # grouping photos that are close variations of each other. For example

      # this is used in the plant disease data set to group multiple pictures of

      # the same leaf.

      hash_name = re.sub(r‘_nohash_.*$‘, ‘‘, file_name)

      # This looks a bit magical, but we need to decide whether this file should

      # go into the training, testing, or validation sets, and we want to keep

      # existing files in the same set even if more files are subsequently

      # added.

      # To do that, we need a stable way of deciding based on just the file name

      # itself, so we do a hash of that and then use that to generate a

      # probability value that we use to assign it.

      hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()

      percentage_hash = ((int(hash_name_hashed, 16) %

                          (MAX_NUM_IMAGES_PER_CLASS + 1)) *

                         (100.0 / MAX_NUM_IMAGES_PER_CLASS))

      if percentage_hash < validation_percentage:

        validation_images.append(base_name)

      elif percentage_hash < (testing_percentage + validation_percentage):

        testing_images.append(base_name)

      else:

        training_images.append(base_name)

    result[label_name] = {

        ‘dir‘: dir_name,

        ‘training‘: training_images,

        ‘testing‘: testing_images,

        ‘validation‘: validation_images,

    }

  return result

def get_image_path(image_lists, label_name, index, image_dir, category):

  """"Returns a path to an image for a label at the given index.

  Args:

    image_lists: Dictionary of training images for each label.

    label_name: Label string we want to get an image for.

    index: Int offset of the image we want. This will be moduloed by the

    available number of images for the label, so it can be arbitrarily large.

    image_dir: Root folder string of the subfolders containing the training

    images.

    category: Name string of set to pull images from - training, testing, or

    validation.

  Returns:

    File system path string to an image that meets the requested parameters.

  """

  if label_name not in image_lists:

    tf.logging.fatal(‘Label does not exist %s.‘, label_name)

  label_lists = image_lists[label_name]

  if category not in label_lists:

    tf.logging.fatal(‘Category does not exist %s.‘, category)

  category_list = label_lists[category]

  if not category_list:

    tf.logging.fatal(‘Label %s has no images in the category %s.‘,

                     label_name, category)

  mod_index = index % len(category_list)

  base_name = category_list[mod_index]

  sub_dir = label_lists[‘dir‘]

  full_path = os.path.join(image_dir, sub_dir, base_name)

  return full_path

def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,

                        category, architecture):

  """"Returns a path to a bottleneck file for a label at the given index.

  Args:

    image_lists: Dictionary of training images for each label.

    label_name: Label string we want to get an image for.

    index: Integer offset of the image we want. This will be moduloed by the

    available number of images for the label, so it can be arbitrarily large.

    bottleneck_dir: Folder string holding cached files of bottleneck values.

    category: Name string of set to pull images from - training, testing, or

    validation.

    architecture: The name of the model architecture.

  Returns:

    File system path string to an image that meets the requested parameters.

  """

  return get_image_path(image_lists, label_name, index, bottleneck_dir,

                        category) + ‘_‘ + architecture + ‘.txt‘

def create_model_graph(model_info):

  """"Creates a graph from saved GraphDef file and returns a Graph object.

  Args:

    model_info: Dictionary containing information about the model architecture.

  Returns:

    Graph holding the trained Inception network, and various tensors we‘ll be

    manipulating.

  """

  with tf.Graph().as_default() as graph:

    model_path = os.path.join(FLAGS.model_dir, model_info[‘model_file_name‘])

    with gfile.FastGFile(model_path, ‘rb‘) as f:

      graph_def = tf.GraphDef()

      graph_def.ParseFromString(f.read())

      bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(

          graph_def,

          name=‘‘,

          return_elements=[

              model_info[‘bottleneck_tensor_name‘],

              model_info[‘resized_input_tensor_name‘],

          ]))

  return graph, bottleneck_tensor, resized_input_tensor

def run_bottleneck_on_image(sess, image_data, image_data_tensor,

                            decoded_image_tensor, resized_input_tensor,

                            bottleneck_tensor):

  """Runs inference on an image to extract the ‘bottleneck‘ summary layer.

  Args:

    sess: Current active TensorFlow Session.

    image_data: String of raw JPEG data.

    image_data_tensor: Input data layer in the graph.

    decoded_image_tensor: Output of initial image resizing and  preprocessing.

    resized_input_tensor: The input node of the recognition graph.

    bottleneck_tensor: Layer before the final softmax.

  Returns:

    Numpy array of bottleneck values.

  """

  # First decode the JPEG image, resize it, and rescale the pixel values.

  resized_input_values = sess.run(decoded_image_tensor,

                                  {image_data_tensor: image_data})

  # Then run it through the recognition network.

  bottleneck_values = sess.run(bottleneck_tensor,

                               {resized_input_tensor: resized_input_values})

  bottleneck_values = np.squeeze(bottleneck_values)

  return bottleneck_values

def maybe_download_and_extract(data_url):

  """Download and extract model tar file.

  If the pretrained model we‘re using doesn‘t already exist, this function

  downloads it from the TensorFlow.org website and unpacks it into a directory.

  Args:

    data_url: Web location of the tar file containing the pretrained model.

  """

  dest_directory = FLAGS.model_dir

  if not os.path.exists(dest_directory):

    os.makedirs(dest_directory)

  filename = data_url.split(‘/‘)[-1]

  filepath = os.path.join(dest_directory, filename)

  if not os.path.exists(filepath):

    def _progress(count, block_size, total_size):

      sys.stdout.write(‘\r>> Downloading %s %.1f%%‘ %

                       (filename,

                        float(count * block_size) / float(total_size) * 100.0))

      sys.stdout.flush()

    filepath, _ = urllib.request.urlretrieve(data_url, filepath, _progress)

    print()

    statinfo = os.stat(filepath)

    tf.logging.info(‘Successfully downloaded‘, filename, statinfo.st_size,

                    ‘bytes.‘)

  tarfile.open(filepath, ‘r:gz‘).extractall(dest_directory)

def ensure_dir_exists(dir_name):

  """Makes sure the folder exists on disk.

  Args:

    dir_name: Path string to the folder we want to create.

  """

  if not os.path.exists(dir_name):

    os.makedirs(dir_name)

bottleneck_path_2_bottleneck_values = {}

def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,

                           image_dir, category, sess, jpeg_data_tensor,

                           decoded_image_tensor, resized_input_tensor,

                           bottleneck_tensor):

  """Create a single bottleneck file."""

  tf.logging.info(‘Creating bottleneck at ‘ + bottleneck_path)

  image_path = get_image_path(image_lists, label_name, index,

                              image_dir, category)

  if not gfile.Exists(image_path):

    tf.logging.fatal(‘File does not exist %s‘, image_path)

  image_data = gfile.FastGFile(image_path, ‘rb‘).read()

  try:

    bottleneck_values = run_bottleneck_on_image(

        sess, image_data, jpeg_data_tensor, decoded_image_tensor,

        resized_input_tensor, bottleneck_tensor)

  except Exception as e:

    raise RuntimeError(‘Error during processing file %s (%s)‘ % (image_path,

                                                                 str(e)))

  bottleneck_string = ‘,‘.join(str(x) for x in bottleneck_values)

  with open(bottleneck_path, ‘w‘) as bottleneck_file:

    bottleneck_file.write(bottleneck_string)

def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,

                             category, bottleneck_dir, jpeg_data_tensor,

                             decoded_image_tensor, resized_input_tensor,

                             bottleneck_tensor, architecture):

  """Retrieves or calculates bottleneck values for an image.

  If a cached version of the bottleneck data exists on-disk, return that,

  otherwise calculate the data and save it to disk for future use.

  Args:

    sess: The current active TensorFlow Session.

    image_lists: Dictionary of training images for each label.

    label_name: Label string we want to get an image for.

    index: Integer offset of the image we want. This will be modulo-ed by the

    available number of images for the label, so it can be arbitrarily large.

    image_dir: Root folder string  of the subfolders containing the training

    images.

    category: Name string of which  set to pull images from - training, testing,

    or validation.

    bottleneck_dir: Folder string holding cached files of bottleneck values.

    jpeg_data_tensor: The tensor to feed loaded jpeg data into.

    decoded_image_tensor: The output of decoding and resizing the image.

    resized_input_tensor: The input node of the recognition graph.

    bottleneck_tensor: The output tensor for the bottleneck values.

    architecture: The name of the model architecture.

  Returns:

    Numpy array of values produced by the bottleneck layer for the image.

  """

  label_lists = image_lists[label_name]

  sub_dir = label_lists[‘dir‘]

  sub_dir_path = os.path.join(bottleneck_dir, sub_dir)

  ensure_dir_exists(sub_dir_path)

  bottleneck_path = get_bottleneck_path(image_lists, label_name, index,

                                        bottleneck_dir, category, architecture)

  if not os.path.exists(bottleneck_path):

    create_bottleneck_file(bottleneck_path, image_lists, label_name, index,

                           image_dir, category, sess, jpeg_data_tensor,

                           decoded_image_tensor, resized_input_tensor,

                           bottleneck_tensor)

  with open(bottleneck_path, ‘r‘) as bottleneck_file:

    bottleneck_string = bottleneck_file.read()

  did_hit_error = False

  try:

    bottleneck_values = [float(x) for x in bottleneck_string.split(‘,‘)]

  except ValueError:

    tf.logging.warning(‘Invalid float found, recreating bottleneck‘)

    did_hit_error = True

  if did_hit_error:

    create_bottleneck_file(bottleneck_path, image_lists, label_name, index,

                           image_dir, category, sess, jpeg_data_tensor,

                           decoded_image_tensor, resized_input_tensor,

                           bottleneck_tensor)

    with open(bottleneck_path, ‘r‘) as bottleneck_file:

      bottleneck_string = bottleneck_file.read()

    # Allow exceptions to propagate here, since they shouldn‘t happen after a

    # fresh creation

    bottleneck_values = [float(x) for x in bottleneck_string.split(‘,‘)]

  return bottleneck_values

def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,

                      jpeg_data_tensor, decoded_image_tensor,

                      resized_input_tensor, bottleneck_tensor, architecture):

  """Ensures all the training, testing, and validation bottlenecks are cached.

  Because we‘re likely to read the same image multiple times (if there are no

  distortions applied during training) it can speed things up a lot if we

  calculate the bottleneck layer values once for each image during

  preprocessing, and then just read those cached values repeatedly during

  training. Here we go through all the images we‘ve found, calculate those

  values, and save them off.

  Args:

    sess: The current active TensorFlow Session.

    image_lists: Dictionary of training images for each label.

    image_dir: Root folder string of the subfolders containing the training

    images.

    bottleneck_dir: Folder string holding cached files of bottleneck values.

    jpeg_data_tensor: Input tensor for jpeg data from file.

    decoded_image_tensor: The output of decoding and resizing the image.

    resized_input_tensor: The input node of the recognition graph.

    bottleneck_tensor: The penultimate output layer of the graph.

    architecture: The name of the model architecture.

  Returns:

    Nothing.

  """

  how_many_bottlenecks = 0

  ensure_dir_exists(bottleneck_dir)

  for label_name, label_lists in image_lists.items():

    for category in [‘training‘, ‘testing‘, ‘validation‘]:

      category_list = label_lists[category]

      for index, unused_base_name in enumerate(category_list):

        get_or_create_bottleneck(

            sess, image_lists, label_name, index, image_dir, category,

            bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,

            resized_input_tensor, bottleneck_tensor, architecture)

        how_many_bottlenecks += 1

        if how_many_bottlenecks % 100 == 0:

          tf.logging.info(

              str(how_many_bottlenecks) + ‘ bottleneck files created.‘)

def get_random_cached_bottlenecks(sess, image_lists, how_many, category,

                                  bottleneck_dir, image_dir, jpeg_data_tensor,

                                  decoded_image_tensor, resized_input_tensor,

                                  bottleneck_tensor, architecture):

  """Retrieves bottleneck values for cached images.

  If no distortions are being applied, this function can retrieve the cached

  bottleneck values directly from disk for images. It picks a random set of

  images from the specified category.

  Args:

    sess: Current TensorFlow Session.

    image_lists: Dictionary of training images for each label.

    how_many: If positive, a random sample of this size will be chosen.

    If negative, all bottlenecks will be retrieved.

    category: Name string of which set to pull from - training, testing, or

    validation.

    bottleneck_dir: Folder string holding cached files of bottleneck values.

    image_dir: Root folder string of the subfolders containing the training

    images.

    jpeg_data_tensor: The layer to feed jpeg image data into.

    decoded_image_tensor: The output of decoding and resizing the image.

    resized_input_tensor: The input node of the recognition graph.

    bottleneck_tensor: The bottleneck output layer of the CNN graph.

    architecture: The name of the model architecture.

  Returns:

    List of bottleneck arrays, their corresponding ground truths, and the

    relevant filenames.

  """

  class_count = len(image_lists.keys())

  bottlenecks = []

  ground_truths = []

  filenames = []

  if how_many >= 0:

    # Retrieve a random sample of bottlenecks.

    for unused_i in range(how_many):

      label_index = random.randrange(class_count)

      label_name = list(image_lists.keys())[label_index]

      image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)

      image_name = get_image_path(image_lists, label_name, image_index,

                                  image_dir, category)

      bottleneck = get_or_create_bottleneck(

          sess, image_lists, label_name, image_index, image_dir, category,

          bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,

          resized_input_tensor, bottleneck_tensor, architecture)

      ground_truth = np.zeros(class_count, dtype=np.float32)

      ground_truth[label_index] = 1.0

      bottlenecks.append(bottleneck)

      ground_truths.append(ground_truth)

      filenames.append(image_name)

  else:

    # Retrieve all bottlenecks.

    for label_index, label_name in enumerate(image_lists.keys()):

      for image_index, image_name in enumerate(

          image_lists[label_name][category]):

        image_name = get_image_path(image_lists, label_name, image_index,

                                    image_dir, category)

        bottleneck = get_or_create_bottleneck(

            sess, image_lists, label_name, image_index, image_dir, category,

            bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,

            resized_input_tensor, bottleneck_tensor, architecture)

        ground_truth = np.zeros(class_count, dtype=np.float32)

        ground_truth[label_index] = 1.0

        bottlenecks.append(bottleneck)

        ground_truths.append(ground_truth)

        filenames.append(image_name)

  return bottlenecks, ground_truths, filenames

def get_random_distorted_bottlenecks(

    sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,

    distorted_image, resized_input_tensor, bottleneck_tensor):

  """Retrieves bottleneck values for training images, after distortions.

  If we‘re training with distortions like crops, scales, or flips, we have to

  recalculate the full model for every image, and so we can‘t use cached

  bottleneck values. Instead we find random images for the requested category,

  run them through the distortion graph, and then the full graph to get the

  bottleneck results for each.

  Args:

    sess: Current TensorFlow Session.

    image_lists: Dictionary of training images for each label.

    how_many: The integer number of bottleneck values to return.

    category: Name string of which set of images to fetch - training, testing,

    or validation.

    image_dir: Root folder string of the subfolders containing the training

    images.

    input_jpeg_tensor: The input layer we feed the image data to.

    distorted_image: The output node of the distortion graph.

    resized_input_tensor: The input node of the recognition graph.

    bottleneck_tensor: The bottleneck output layer of the CNN graph.

  Returns:

    List of bottleneck arrays and their corresponding ground truths.

  """

  class_count = len(image_lists.keys())

  bottlenecks = []

  ground_truths = []

  for unused_i in range(how_many):

    label_index = random.randrange(class_count)

    label_name = list(image_lists.keys())[label_index]

    image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)

    image_path = get_image_path(image_lists, label_name, image_index, image_dir,

                                category)

    if not gfile.Exists(image_path):

      tf.logging.fatal(‘File does not exist %s‘, image_path)

    jpeg_data = gfile.FastGFile(image_path, ‘rb‘).read()

    # Note that we materialize the distorted_image_data as a numpy array before

    # sending running inference on the image. This involves 2 memory copies and

    # might be optimized in other implementations.

    distorted_image_data = sess.run(distorted_image,

                                    {input_jpeg_tensor: jpeg_data})

    bottleneck_values = sess.run(bottleneck_tensor,

                                 {resized_input_tensor: distorted_image_data})

    bottleneck_values = np.squeeze(bottleneck_values)

    ground_truth = np.zeros(class_count, dtype=np.float32)

    ground_truth[label_index] = 1.0

    bottlenecks.append(bottleneck_values)

    ground_truths.append(ground_truth)

  return bottlenecks, ground_truths

def should_distort_images(flip_left_right, random_crop, random_scale,

                          random_brightness):

  """Whether any distortions are enabled, from the input flags.

  Args:

    flip_left_right: Boolean whether to randomly mirror images horizontally.

    random_crop: Integer percentage setting the total margin used around the

    crop box.

    random_scale: Integer percentage of how much to vary the scale by.

    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:

    Boolean value indicating whether any distortions should be applied.

  """

  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or

          (random_brightness != 0))

def add_input_distortions(flip_left_right, random_crop, random_scale,

                          random_brightness, input_width, input_height,

                          input_depth, input_mean, input_std):

  """Creates the operations to apply the specified distortions.

  During training it can help to improve the results if we run the images

  through simple distortions like crops, scales, and flips. These reflect the

  kind of variations we expect in the real world, and so can help train the

  model to cope with natural data more effectively. Here we take the supplied

  parameters and construct a network of operations to apply them to an image.

  Cropping

  ~~~~~~~~

  Cropping is done by placing a bounding box at a random position in the full

  image. The cropping parameter controls the size of that box relative to the

  input image. If it‘s zero, then the box is the same size as the input and no

  cropping is performed. If the value is 50%, then the crop box will be half the

  width and height of the input. In a diagram it looks like this:

  <       width         >

  +---------------------+

  |                     |

  |   width - crop%     |

  |    <      >         |

  |    +------+         |

  |    |      |         |

  |    |      |         |

  |    |      |         |

  |    +------+         |

  |                     |

  |                     |

  +---------------------+

  Scaling

  ~~~~~~~

  Scaling is a lot like cropping, except that the bounding box is always

  centered and its size varies randomly within the given range. For example if

  the scale percentage is zero, then the bounding box is the same size as the

  input and no scaling is applied. If it‘s 50%, then the bounding box will be in

  a random range between half the width and height and full size.

  Args:

    flip_left_right: Boolean whether to randomly mirror images horizontally.

    random_crop: Integer percentage setting the total margin used around the

    crop box.

    random_scale: Integer percentage of how much to vary the scale by.

    random_brightness: Integer range to randomly multiply the pixel values by.

    graph.

    input_width: Horizontal size of expected input image to model.

    input_height: Vertical size of expected input image to model.

    input_depth: How many channels the expected input image should have.

    input_mean: Pixel value that should be zero in the image for the graph.

    input_std: How much to divide the pixel values by before recognition.

  Returns:

    The jpeg input layer and the distorted result tensor.

  """

  jpeg_data = tf.placeholder(tf.string, name=‘DistortJPGInput‘)

  decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)

  decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)

  decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)

  margin_scale = 1.0 + (random_crop / 100.0)

  resize_scale = 1.0 + (random_scale / 100.0)

  margin_scale_value = tf.constant(margin_scale)

  resize_scale_value = tf.random_uniform(tensor_shape.scalar(),

                                         minval=1.0,

                                         maxval=resize_scale)

  scale_value = tf.multiply(margin_scale_value, resize_scale_value)

  precrop_width = tf.multiply(scale_value, input_width)

  precrop_height = tf.multiply(scale_value, input_height)

  precrop_shape = tf.stack([precrop_height, precrop_width])

  precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)

  precropped_image = tf.image.resize_bilinear(decoded_image_4d,

                                              precrop_shape_as_int)

  precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])

  cropped_image = tf.random_crop(precropped_image_3d,

                                 [input_height, input_width, input_depth])

  if flip_left_right:

    flipped_image = tf.image.random_flip_left_right(cropped_image)

  else:

    flipped_image = cropped_image

  brightness_min = 1.0 - (random_brightness / 100.0)

  brightness_max = 1.0 + (random_brightness / 100.0)

  brightness_value = tf.random_uniform(tensor_shape.scalar(),

                                       minval=brightness_min,

                                       maxval=brightness_max)

  brightened_image = tf.multiply(flipped_image, brightness_value)

  offset_image = tf.subtract(brightened_image, input_mean)

  mul_image = tf.multiply(offset_image, 1.0 / input_std)

  distort_result = tf.expand_dims(mul_image, 0, name=‘DistortResult‘)

  return jpeg_data, distort_result

def variable_summaries(var):

  """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""

  with tf.name_scope(‘summaries‘):

    mean = tf.reduce_mean(var)

    tf.summary.scalar(‘mean‘, mean)

    with tf.name_scope(‘stddev‘):

      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))

    tf.summary.scalar(‘stddev‘, stddev)

    tf.summary.scalar(‘max‘, tf.reduce_max(var))

    tf.summary.scalar(‘min‘, tf.reduce_min(var))

    tf.summary.histogram(‘histogram‘, var)

def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor,

                           bottleneck_tensor_size):

  """Adds a new softmax and fully-connected layer for training.

  We need to retrain the top layer to identify our new classes, so this function

  adds the right operations to the graph, along with some variables to hold the

  weights, and then sets up all the gradients for the backward pass.

  The set up for the softmax and fully-connected layers is based on:

  https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html

  Args:

    class_count: Integer of how many categories of things we‘re trying to

    recognize.

    final_tensor_name: Name string for the new final node that produces results.

    bottleneck_tensor: The output of the main CNN graph.

    bottleneck_tensor_size: How many entries in the bottleneck vector.

  Returns:

    The tensors for the training and cross entropy results, and tensors for the

    bottleneck input and ground truth input.

  """

  with tf.name_scope(‘input‘):

    bottleneck_input = tf.placeholder_with_default(

        bottleneck_tensor,

        shape=[None, bottleneck_tensor_size],

        name=‘BottleneckInputPlaceholder‘)

    ground_truth_input = tf.placeholder(tf.float32,

                                        [None, class_count],

                                        name=‘GroundTruthInput‘)

  # Organizing the following ops as `final_training_ops` so they‘re easier

  # to see in TensorBoard

  layer_name = ‘final_training_ops‘

  with tf.name_scope(layer_name):

    with tf.name_scope(‘weights‘):

      initial_value = tf.truncated_normal(

          [bottleneck_tensor_size, class_count], stddev=0.001)

      layer_weights = tf.Variable(initial_value, name=‘final_weights‘)

      variable_summaries(layer_weights)

    with tf.name_scope(‘biases‘):

      layer_biases = tf.Variable(tf.zeros([class_count]), name=‘final_biases‘)

      variable_summaries(layer_biases)

    with tf.name_scope(‘Wx_plus_b‘):

      logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases

      tf.summary.histogram(‘pre_activations‘, logits)

  final_tensor = tf.nn.softmax(logits, name=final_tensor_name)

  tf.summary.histogram(‘activations‘, final_tensor)

  with tf.name_scope(‘cross_entropy‘):

    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(

        labels=ground_truth_input, logits=logits)

    with tf.name_scope(‘total‘):

      cross_entropy_mean = tf.reduce_mean(cross_entropy)

  tf.summary.scalar(‘cross_entropy‘, cross_entropy_mean)

  with tf.name_scope(‘train‘):

    optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)

    train_step = optimizer.minimize(cross_entropy_mean)

  return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,

          final_tensor)

def add_evaluation_step(result_tensor, ground_truth_tensor):

  """Inserts the operations we need to evaluate the accuracy of our results.

  Args:

    result_tensor: The new final node that produces results.

    ground_truth_tensor: The node we feed ground truth data

    into.

  Returns:

    Tuple of (evaluation step, prediction).

  """

  with tf.name_scope(‘accuracy‘):

    with tf.name_scope(‘correct_prediction‘):

      prediction = tf.argmax(result_tensor, 1)

      correct_prediction = tf.equal(

          prediction, tf.argmax(ground_truth_tensor, 1))

    with tf.name_scope(‘accuracy‘):

      evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

  tf.summary.scalar(‘accuracy‘, evaluation_step)

  return evaluation_step, prediction

def save_graph_to_file(sess, graph, graph_file_name):

  output_graph_def = graph_util.convert_variables_to_constants(

      sess, graph.as_graph_def(), [FLAGS.final_tensor_name])

  with gfile.FastGFile(graph_file_name, ‘wb‘) as f:

    f.write(output_graph_def.SerializeToString())

  return

def prepare_file_system():

  # Setup the directory we‘ll write summaries to for TensorBoard

  if tf.gfile.Exists(FLAGS.summaries_dir):

    tf.gfile.DeleteRecursively(FLAGS.summaries_dir)

  tf.gfile.MakeDirs(FLAGS.summaries_dir)

  if FLAGS.intermediate_store_frequency > 0:

    ensure_dir_exists(FLAGS.intermediate_output_graphs_dir)

  return

def create_model_info(architecture):

  """Given the name of a model architecture, returns information about it.

  There are different base image recognition pretrained models that can be

  retrained using transfer learning, and this function translates from the name

  of a model to the attributes that are needed to download and train with it.

  Args:

    architecture: Name of a model architecture.

  Returns:

    Dictionary of information about the model, or None if the name isn‘t

    recognized

  Raises:

    ValueError: If architecture name is unknown.

  """

  architecture = architecture.lower()

  if architecture == ‘inception_v3‘:

    # pylint: disable=line-too-long

    data_url = ‘http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz‘

    # pylint: enable=line-too-long

    bottleneck_tensor_name = ‘pool_3/_reshape:0‘

    bottleneck_tensor_size = 2048

    input_width = 299

    input_height = 299

    input_depth = 3

    resized_input_tensor_name = ‘Mul:0‘

    model_file_name = ‘classify_image_graph_def.pb‘

    input_mean = 128

    input_std = 128

  elif architecture.startswith(‘mobilenet_‘):

    parts = architecture.split(‘_‘)

    if len(parts) != 3 and len(parts) != 4:

      tf.logging.error("Couldn‘t understand architecture name ‘%s‘",

                       architecture)

      return None

    version_string = parts[1]

    if (version_string != ‘1.0‘ and version_string != ‘0.75‘ and

        version_string != ‘0.50‘ and version_string != ‘0.25‘):

      tf.logging.error(

          """"The Mobilenet version should be ‘1.0‘, ‘0.75‘, ‘0.50‘, or ‘0.25‘,

  but found ‘%s‘ for architecture ‘%s‘""",

          version_string, architecture)

      return None

    size_string = parts[2]

    if (size_string != ‘224‘ and size_string != ‘192‘ and

        size_string != ‘160‘ and size_string != ‘128‘):

      tf.logging.error(

          """The Mobilenet input size should be ‘224‘, ‘192‘, ‘160‘, or ‘128‘,

 but found ‘%s‘ for architecture ‘%s‘""",

          size_string, architecture)

      return None

    if len(parts) == 3:

      is_quantized = False

    else:

      if parts[3] != ‘quantized‘:

        tf.logging.error(

            "Couldn‘t understand architecture suffix ‘%s‘ for ‘%s‘", parts[3],

            architecture)

        return None

      is_quantized = True

    data_url = ‘http://download.tensorflow.org/models/mobilenet_v1_‘

    data_url += version_string + ‘_‘ + size_string + ‘_frozen.tgz‘

    bottleneck_tensor_name = ‘MobilenetV1/Predictions/Reshape:0‘

    bottleneck_tensor_size = 1001

    input_width = int(size_string)

    input_height = int(size_string)

    input_depth = 3

    resized_input_tensor_name = ‘input:0‘

    if is_quantized:

      model_base_name = ‘quantized_graph.pb‘

    else:

      model_base_name = ‘frozen_graph.pb‘

    model_dir_name = ‘mobilenet_v1_‘ + version_string + ‘_‘ + size_string

    model_file_name = os.path.join(model_dir_name, model_base_name)

    input_mean = 127.5

    input_std = 127.5

  else:

    tf.logging.error("Couldn‘t understand architecture name ‘%s‘", architecture)

    raise ValueError(‘Unknown architecture‘, architecture)

  return {

      ‘data_url‘: data_url,

      ‘bottleneck_tensor_name‘: bottleneck_tensor_name,

      ‘bottleneck_tensor_size‘: bottleneck_tensor_size,

      ‘input_width‘: input_width,

      ‘input_height‘: input_height,

      ‘input_depth‘: input_depth,

      ‘resized_input_tensor_name‘: resized_input_tensor_name,

      ‘model_file_name‘: model_file_name,

      ‘input_mean‘: input_mean,

      ‘input_std‘: input_std,

  }

def add_jpeg_decoding(input_width, input_height, input_depth, input_mean,

                      input_std):

  """Adds operations that perform JPEG decoding and resizing to the graph..

  Args:

    input_width: Desired width of the image fed into the recognizer graph.

    input_height: Desired width of the image fed into the recognizer graph.

    input_depth: Desired channels of the image fed into the recognizer graph.

    input_mean: Pixel value that should be zero in the image for the graph.

    input_std: How much to divide the pixel values by before recognition.

  Returns:

    Tensors for the node to feed JPEG data into, and the output of the

      preprocessing steps.

  """

  jpeg_data = tf.placeholder(tf.string, name=‘DecodeJPGInput‘)

  decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)

  decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)

  decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)

  resize_shape = tf.stack([input_height, input_width])

  resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)

  resized_image = tf.image.resize_bilinear(decoded_image_4d,

                                           resize_shape_as_int)

  offset_image = tf.subtract(resized_image, input_mean)

  mul_image = tf.multiply(offset_image, 1.0 / input_std)

  return jpeg_data, mul_image

def main(_):

  # Needed to make sure the logging output is visible.

  # See https://github.com/tensorflow/tensorflow/issues/3047

  tf.logging.set_verbosity(tf.logging.INFO)

  # Prepare necessary directories  that can be used during training

  prepare_file_system()

  # Gather information about the model architecture we‘ll be using.

  model_info = create_model_info(FLAGS.architecture)

  if not model_info:

    tf.logging.error(‘Did not recognize architecture flag‘)

    return -1

  # Set up the pre-trained graph.

  maybe_download_and_extract(model_info[‘data_url‘])

  graph, bottleneck_tensor, resized_image_tensor = (

      create_model_graph(model_info))

  # Look at the folder structure, and create lists of all the images.

  image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,

                                   FLAGS.validation_percentage)

  class_count = len(image_lists.keys())

  if class_count == 0:

    tf.logging.error(‘No valid folders of images found at ‘ + FLAGS.image_dir)

    return -1

  if class_count == 1:

    tf.logging.error(‘Only one valid folder of images found at ‘ +

                     FLAGS.image_dir +

                     ‘ - multiple classes are needed for classification.‘)

    return -1

  # See if the command-line flags mean we‘re applying any distortions.

  do_distort_images = should_distort_images(

      FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,

      FLAGS.random_brightness)

  with tf.Session(graph=graph) as sess:

    # Set up the image decoding sub-graph.

    jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(

        model_info[‘input_width‘], model_info[‘input_height‘],

        model_info[‘input_depth‘], model_info[‘input_mean‘],

        model_info[‘input_std‘])

    if do_distort_images:

      # We will be applying distortions, so setup the operations we‘ll need.

      (distorted_jpeg_data_tensor,

       distorted_image_tensor) = add_input_distortions(

           FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,

           FLAGS.random_brightness, model_info[‘input_width‘],

           model_info[‘input_height‘], model_info[‘input_depth‘],

           model_info[‘input_mean‘], model_info[‘input_std‘])

    else:

      # We‘ll make sure we‘ve calculated the ‘bottleneck‘ image summaries and

      # cached them on disk.

      cache_bottlenecks(sess, image_lists, FLAGS.image_dir,

                        FLAGS.bottleneck_dir, jpeg_data_tensor,

                        decoded_image_tensor, resized_image_tensor,

                        bottleneck_tensor, FLAGS.architecture)

    # Add the new layer that we‘ll be training.

    (train_step, cross_entropy, bottleneck_input, ground_truth_input,

     final_tensor) = add_final_training_ops(

         len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor,

         model_info[‘bottleneck_tensor_size‘])

    # Create the operations we need to evaluate the accuracy of our new layer.

    evaluation_step, prediction = add_evaluation_step(

        final_tensor, ground_truth_input)

    # Merge all the summaries and write them out to the summaries_dir

    merged = tf.summary.merge_all()

    train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + ‘/train‘,

                                         sess.graph)

    validation_writer = tf.summary.FileWriter(

        FLAGS.summaries_dir + ‘/validation‘)

    # Set up all our weights to their initial default values.

    init = tf.global_variables_initializer()

    sess.run(init)

    # Run the training for as many cycles as requested on the command line.

    for i in range(FLAGS.how_many_training_steps):

      # Get a batch of input bottleneck values, either calculated fresh every

      # time with distortions applied, or from the cache stored on disk.

      if do_distort_images:

        (train_bottlenecks,

         train_ground_truth) = get_random_distorted_bottlenecks(

             sess, image_lists, FLAGS.train_batch_size, ‘training‘,

             FLAGS.image_dir, distorted_jpeg_data_tensor,

             distorted_image_tensor, resized_image_tensor, bottleneck_tensor)

      else:

        (train_bottlenecks,

         train_ground_truth, _) = get_random_cached_bottlenecks(

             sess, image_lists, FLAGS.train_batch_size, ‘training‘,

             FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,

             decoded_image_tensor, resized_image_tensor, bottleneck_tensor,

             FLAGS.architecture)

      # Feed the bottlenecks and ground truth into the graph, and run a training

      # step. Capture training summaries for TensorBoard with the `merged` op.

      train_summary, _ = sess.run(

          [merged, train_step],

          feed_dict={bottleneck_input: train_bottlenecks,

                     ground_truth_input: train_ground_truth})

      train_writer.add_summary(train_summary, i)

      # Every so often, print out how well the graph is training.

      is_last_step = (i + 1 == FLAGS.how_many_training_steps)

      if (i % FLAGS.eval_step_interval) == 0 or is_last_step:

        train_accuracy, cross_entropy_value = sess.run(

            [evaluation_step, cross_entropy],

            feed_dict={bottleneck_input: train_bottlenecks,

                       ground_truth_input: train_ground_truth})

        tf.logging.info(‘%s: Step %d: Train accuracy = %.1f%%‘ %

                        (datetime.now(), i, train_accuracy * 100))

        tf.logging.info(‘%s: Step %d: Cross entropy = %f‘ %

                        (datetime.now(), i, cross_entropy_value))

        validation_bottlenecks, validation_ground_truth, _ = (

            get_random_cached_bottlenecks(

                sess, image_lists, FLAGS.validation_batch_size, ‘validation‘,

                FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,

                decoded_image_tensor, resized_image_tensor, bottleneck_tensor,

                FLAGS.architecture))

        # Run a validation step and capture training summaries for TensorBoard

        # with the `merged` op.

        validation_summary, validation_accuracy = sess.run(

            [merged, evaluation_step],

            feed_dict={bottleneck_input: validation_bottlenecks,

                       ground_truth_input: validation_ground_truth})

        validation_writer.add_summary(validation_summary, i)

        tf.logging.info(‘%s: Step %d: Validation accuracy = %.1f%% (N=%d)‘ %

                        (datetime.now(), i, validation_accuracy * 100,

                         len(validation_bottlenecks)))

      # Store intermediate results

      intermediate_frequency = FLAGS.intermediate_store_frequency

      if (intermediate_frequency > 0 and (i % intermediate_frequency == 0)

          and i > 0):

        intermediate_file_name = (FLAGS.intermediate_output_graphs_dir +

                                  ‘intermediate_‘ + str(i) + ‘.pb‘)

        tf.logging.info(‘Save intermediate result to : ‘ +

                        intermediate_file_name)

        save_graph_to_file(sess, graph, intermediate_file_name)

    # We‘ve completed all our training, so run a final test evaluation on

    # some new images we haven‘t used before.

    test_bottlenecks, test_ground_truth, test_filenames = (

        get_random_cached_bottlenecks(

            sess, image_lists, FLAGS.test_batch_size, ‘testing‘,

            FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,

            decoded_image_tensor, resized_image_tensor, bottleneck_tensor,

            FLAGS.architecture))

    test_accuracy, predictions = sess.run(

        [evaluation_step, prediction],

        feed_dict={bottleneck_input: test_bottlenecks,

                   ground_truth_input: test_ground_truth})

    tf.logging.info(‘Final test accuracy = %.1f%% (N=%d)‘ %

                    (test_accuracy * 100, len(test_bottlenecks)))

    if FLAGS.print_misclassified_test_images:

      tf.logging.info(‘=== MISCLASSIFIED TEST IMAGES ===‘)

      for i, test_filename in enumerate(test_filenames):

        if predictions[i] != test_ground_truth[i].argmax():

          tf.logging.info(‘%70s  %s‘ %

                          (test_filename,

                           list(image_lists.keys())[predictions[i]]))

    # Write out the trained graph and labels with the weights stored as

    # constants.

    save_graph_to_file(sess, graph, FLAGS.output_graph)

    with gfile.FastGFile(FLAGS.output_labels, ‘w‘) as f:

      f.write(‘\n‘.join(image_lists.keys()) + ‘\n‘)

if __name__ == ‘__main__‘:

  parser = argparse.ArgumentParser()

  parser.add_argument(

      ‘--image_dir‘,

      type=str,

      default=‘‘,

      help=‘Path to folders of labeled images.‘

  )

  parser.add_argument(

      ‘--output_graph‘,

      type=str,

      default=‘/tmp/output_graph.pb‘,

      help=‘Where to save the trained graph.‘

  )

  parser.add_argument(

      ‘--intermediate_output_graphs_dir‘,

      type=str,

      default=‘/tmp/intermediate_graph/‘,

      help=‘Where to save the intermediate graphs.‘

  )

  parser.add_argument(

      ‘--intermediate_store_frequency‘,

      type=int,

      default=0,

      help="""
         How many steps to store intermediate graph. If "0" then will not

         store.
      """

  )

  parser.add_argument(

      ‘--output_labels‘,

      type=str,

      default=‘/tmp/output_labels.txt‘,

      help=‘Where to save the trained graph\‘s labels.‘

  )

  parser.add_argument(

      ‘--summaries_dir‘,

      type=str,

      default=‘/tmp/retrain_logs‘,

      help=‘Where to save summary logs for TensorBoard.‘

  )

  parser.add_argument(

      ‘--how_many_training_steps‘,

      type=int,

      default=4000,

      help=‘How many training steps to run before ending.‘

  )

  parser.add_argument(

      ‘--learning_rate‘,

      type=float,

      default=0.01,

      help=‘How large a learning rate to use when training.‘

  )

  parser.add_argument(

      ‘--testing_percentage‘,

      type=int,

      default=10,

      help=‘What percentage of images to use as a test set.‘

  )

  parser.add_argument(

      ‘--validation_percentage‘,

      type=int,

      default=10,

      help=‘What percentage of images to use as a validation set.‘

  )

  parser.add_argument(

      ‘--eval_step_interval‘,

      type=int,

      default=10,

      help=‘How often to evaluate the training results.‘

  )

  parser.add_argument(

      ‘--train_batch_size‘,

      type=int,

      default=100,

      help=‘How many images to train on at a time.‘

  )

  parser.add_argument(

      ‘--test_batch_size‘,

      type=int,

      default=-1,

      help="""
      How many images to test on. This test set is only used once, to evaluate

      the final accuracy of the model after training completes.

      A value of -1 causes the entire test set to be used, which leads to more

      stable results across runs.
      """

  )

  parser.add_argument(

      ‘--validation_batch_size‘,

      type=int,

      default=100,

      help="""
      How many images to use in an evaluation batch. This validation set is

      used much more often than the test set, and is an early indicator of how

      accurate the model is during training.

      A value of -1 causes the entire validation set to be used, which leads to

      more stable results across training iterations, but may be slower on large

      training sets.
      """

  )

  parser.add_argument(

      ‘--print_misclassified_test_images‘,

      default=False,

      help="""
      Whether to print out a list of all misclassified test images.
      """,

      action=‘store_true‘

  )

  parser.add_argument(

      ‘--model_dir‘,

      type=str,

      default=‘/tmp/imagenet‘,

      help="""
      Path to classify_image_graph_def.pb,

      imagenet_synset_to_human_label_map.txt, and

      imagenet_2012_challenge_label_map_proto.pbtxt.
      """

  )

  parser.add_argument(

      ‘--bottleneck_dir‘,

      type=str,

      default=‘/tmp/bottleneck‘,

      help=‘Path to cache bottleneck layer values as files.‘

  )

  parser.add_argument(

      ‘--final_tensor_name‘,

      type=str,

      default=‘final_result‘,

      help="""
      The name of the output classification layer in the retrained graph.
      """

  )

  parser.add_argument(

      ‘--flip_left_right‘,

      default=False,

      help="""
      Whether to randomly flip half of the training images horizontally.
      """,

      action=‘store_true‘

  )

  parser.add_argument(

      ‘--random_crop‘,

      type=int,

      default=0,

      help="""
      A percentage determining how much of a margin to randomly crop off the

      training images.
      """

  )

  parser.add_argument(

      ‘--random_scale‘,

      type=int,

      default=0,

      help="""
      A percentage determining how much to randomly scale up the size of the

      training images by.
      """

  )

  parser.add_argument(

      ‘--random_brightness‘,

      type=int,

      default=0,

      help="""
      A percentage determining how much to randomly multiply the training image

      input pixels up or down by.
      """

  )

  parser.add_argument(

      ‘--architecture‘,

      type=str,

      default=‘inception_v3‘,

      help="""
      Which model architecture to use. ‘inception_v3‘ is the most accurate, but

      also the slowest. For faster or smaller models, chose a MobileNet with the

      form ‘mobilenet_<parameter size>_<input_size>[_quantized]‘. For example,

      ‘mobilenet_1.0_224‘ will pick a model that is 17 MB in size and takes 224

      pixel input images, while ‘mobilenet_0.25_128_quantized‘ will choose a much

      less accurate, but smaller and faster network that‘s 920 KB on disk and

      takes 128x128 images. See https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html

      for more information on Mobilenet.
      """)

  FLAGS, unparsed = parser.parse_known_args()

  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

测试重新训练好的模型:

# coding: utf-8
import tensorflow as tf
import os
import numpy as np
import re
from PIL import Image
import matplotlib.pyplot as plt

lines = tf.gfile.GFile(‘tmp/output_labels.txt‘).readlines()
uid_to_human = {}
#一行一行读取数据
for uid,line in enumerate(lines) :
    #去掉换行符
    line=line.strip(‘\n‘)
    uid_to_human[uid] = line

def id_to_string(node_id):
    if node_id not in uid_to_human:
        return ‘‘
    return uid_to_human[node_id]

#创建一个图来存放google训练好的模型
with tf.gfile.FastGFile(‘tmp/output_graph.pb‘, ‘rb‘) as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def, name=‘‘)

with tf.Session() as sess:
    softmax_tensor = sess.graph.get_tensor_by_name(‘final_result:0‘)
    #遍历目录
    for root,dirs,files in os.walk(‘images/‘):
        for file in files:
            #载入图片
            image_data = tf.gfile.FastGFile(os.path.join(root,file), ‘rb‘).read()
            predictions = sess.run(softmax_tensor,{‘DecodeJpeg/contents:0‘: image_data})#图片格式是jpg格式
            predictions = np.squeeze(predictions)#把结果转为1维数据

            #打印图片路径及名称
            image_path = os.path.join(root,file)
            print(image_path)
            #显示图片
            img=Image.open(image_path)
            plt.imshow(img)
            plt.axis(‘off‘)
            plt.show()

            #排序
            top_k = predictions.argsort()[::-1]
            print(top_k)
            for node_id in top_k:
                #获取分类名称
                human_string = id_to_string(node_id)
                #获取该分类的置信度
                score = predictions[node_id]
                print(‘%s (score = %.5f)‘ % (human_string, score))
            print()

原文地址:https://www.cnblogs.com/54hys/p/10254513.html

时间: 2024-11-13 10:06:00

tensorflow迁移学习retrain.py的相关文章

使用tensorflow的retrain.py训练图片分类器

参考 https://hackernoon.com/creating-insanely-fast-image-classifiers-with-mobilenet-in-tensorflow-f030ce0a2991 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py https://codelabs.developers.google.com/c

tensorflow实现迁移学习

此例程出自<TensorFlow实战Google深度学习框架>6.5.2小节 卷积神经网络迁移学习. 数据集来自http://download.tensorflow.org/example_images/flower_photos.tgz ,及谷歌提供的Inception-v3模型https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip . 自行下载和解压. 解压后的文件夹包含5个子

TensorFlow从1到2(九)迁移学习

迁移学习基本概念 迁移学习是这两年比较火的一个话题,主要原因是在当前的机器学习中,样本数据的获取是成本最高的一块.而迁移学习可以有效的把原有的学习经验(对于模型就是模型本身及其训练好的权重值)带入到新的领域,从而不需要过多的样本数据,也能达到大批量数据所达成的效果,进一步节省了学习的计算量和时间. MobileNet V2是由谷歌在2018年初发布的一个视觉模型,在Keras中已经内置的并使用ImageNet完成了训练,可以直接拿来就用,这个我们在本系列第五篇中已经提过了.MobileNet V

『TensorFlow』迁移学习_他山之石,可以攻玉

目的: 使用google已经训练好的模型,将最后的全连接层修改为我们自己的全连接层,将原有的1000分类分类器修改为我们自己的5分类分类器,利用原有模型的特征提取能力实现我们自己数据对应模型的快速训练.实际中对于一个陌生的数据集,原有模型经过不高的迭代次数即可获得很好的准确率. 实战: 实机文件夹如下,两个压缩文件可以忽略: 花朵图片数据下载: 1 curl -O http://download.tensorflow.org/example_images/flower_photos.tgz 已经

TensorFlow keras 迁移学习

数据的读取 import tensorflow as tf from tensorflow.python import keras from tensorflow.python.keras.preprocessing.image import ImageDataGenerator class TransferModel(object): def __init__(self): #标准化和数据增强 self.train_generator = ImageDataGenerator(rescale=

(转) TensorFlow深度学习,一篇文章就够了

TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6 原文出处: 我爱计算机 (@tobe迪豪 ) 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框

问题集录--TensorFlow深度学习

TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe.Theano.Torch.MXNet等框架相比,TensorFlow在Github上Fork数和Star数都是最多的,而且在图形分类.音频处理.推荐系统和自然语言处理等场景下都有丰富的应用.最近流行的Keras框架底层默认使用TensorFlow,著名的斯坦福CS231n课程使用TensorFlo

1、VGG16 2、VGG19 3、ResNet50 4、Inception V3 5、Xception介绍——迁移学习

ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks,原作者保留版权 卷积神经网络在视觉识别任务上的表现令人称奇.好的CNN网络是带有上百万参数和许多隐含层的"庞然怪物".事实上,一个不好的经验规则是:网络越深,效果越好.AlexNet,VGG,Inc

迁移学习、fine-tune和局部参数恢复

参考:迁移学习——Fine-tune 一.迁移学习 就是把已训练好的模型参数迁移到新的模型来帮助新模型训练. 模型的训练与预测: 深度学习的模型可以划分为 训练 和 预测 两个阶段. 训练 分为两种策略:一种是白手起家从头搭建模型进行训练,一种是通过预训练模型进行训练. 预测 相对简单,直接用已经训练好的模型对数据集进行预测即可. 优点: 1)站在巨人的肩膀上:前人花很大精力训练出来的模型在大概率上会比你自己从零开始搭的模型要强悍,没有必要重复造轮子. 2)训练成本可以很低:如果采用导出特征向量