[bzoj3456]城市规划——分治FFT

题目大意:

求n个点的带标号简单无向联通图的数目。

思路:

嗯多项式求逆还不会,到时候会了应该会补吧。

这种和图计数有关的题目一般都是考虑反面计数或者是容斥什么的。

考虑枚举一号点的连通块的大小,然后用总方案数减去这些方案数。

可以得到递推式:
\[
f_{i}=2^{i\choose 2}-\sum_{j=1}^{i-1}{i-1\choose j-1}\times f_{j}\times 2^{i-j\choose2}
\]
后面的式子可以化为卷积的形式:
\[
f_{i}=2^{i\choose 2}-(i-1)!\times \sum_{j=1}^{i-1}\frac{f_j}{(j-1)!}\times \frac{2^{i-j\choose 2}}{(i-j)!}
\]
直接分治\(fft\)即可。

辣鸡bzoj卡不过去,只能交luogu了

/*=======================================
 * Author : ylsoi
 * Time : 2019.1.29
 * Problem : bzoj3456
 * E-mail : [email protected]
 * ====================================*/
#include<bits/stdc++.h>

#define REP(i,a,b) for(int i=a,i##_end_=b;i<=i##_end_;++i)
#define DREP(i,a,b) for(int i=a,i##_end_=b;i>=i##_end_;--i)
#define debug(x) cout<<#x<<"="<<x<<" "
#define fi first
#define se second
#define mk make_pair
#define pb push_back
typedef long long ll;

using namespace std;

void File(){
    freopen("bzoj3456.in","r",stdin);
    freopen("bzoj3456.out","w",stdout);
}

template<typename T>void read(T &_){
    _=0; T fl=1; char ch=getchar();
    for(;!isdigit(ch);ch=getchar())if(ch=='-')fl=-1;
    for(;isdigit(ch);ch=getchar())_=(_<<1)+(_<<3)+(ch^'0');
    _*=fl;
}

const int maxn=13e4+10;
const int mod=1004535809;

ll qpow(ll x,ll y){
    ll ret=1; x%=mod;
    while(y){
        if(y&1)ret=ret*x%mod;
        x=x*x%mod;
        y>>=1;
    }
    return ret;
}

struct ksslbh{
    int lim,cnt,dn[maxn<<2];
    ll g[maxn<<2],ig[maxn<<2];
    void ntt(ll *A,int ty){
        REP(i,0,lim-1)if(i<dn[i])swap(A[i],A[dn[i]]);
        for(int len=1;len<lim;len<<=1){
            ll w= ty==1 ? g[len<<1] : ig[len<<1];
            for(int L=0;L<lim;L+=len<<1){
                ll wk=1;
                REP(i,L,L+len-1){
                    ll u=A[i],v=A[i+len]*wk%mod;
                    A[i]=(u+v)%mod;
                    A[i+len]=(u-v)%mod;
                    wk=wk*w%mod;
                }
            }
        }
    }
    void work(int n,int m,ll *a,ll *b){
        lim=1,cnt=0;
        while(lim<=n+m)lim<<=1,++cnt;
        if(!cnt)cnt=1;
        REP(i,0,lim){
            dn[i]=dn[i>>1]>>1|((i&1)<<(cnt-1));
            if(i>n)a[i]=0;
            if(i>m)b[i]=0;
        }
        g[lim]=qpow(3,(mod-1)/lim);
        ig[lim]=qpow(g[lim],mod-2);
        for(int i=lim>>1;i;i>>=1){
            g[i]=g[i<<1]*g[i<<1]%mod;
            ig[i]=ig[i<<1]*ig[i<<1]%mod;
        }
        ntt(a,1),ntt(b,1);
        REP(i,0,lim-1)a[i]=a[i]*b[i]%mod;
        ntt(a,-1);
        ll inv=qpow(lim,mod-2);
        REP(i,0,lim-1)a[i]=a[i]*inv%mod;
    }
}T;

int n;
ll po[maxn],f[maxn],g[maxn],a[maxn<<2],b[maxn<<2];
ll fac[maxn],ifac[maxn];

void math_init(){
    fac[0]=1;
    REP(i,1,n)fac[i]=fac[i-1]*i%mod;
    ifac[n]=qpow(fac[n],mod-2);
    DREP(i,n-1,0)ifac[i]=ifac[i+1]*(i+1)%mod;
}

void divide(int l,int r){
    if(l==r){
        f[l]=(f[l]*fac[l-1]%mod+po[l])%mod;
        return;
    }
    int mid=(l+r)>>1;
    divide(l,mid);
    //f -> a , [l,mid] -> [0,mid-l]
    //g -> b , [1,r-l] -> [0,r-l-1]
    REP(i,l,mid)a[i-l]=f[i]*ifac[i-1]%mod;
    REP(i,1,r-l)b[i-1]=g[i];
    T.work(mid-l,r-l-1,a,b);
    REP(i,mid+1,r)f[i]=(f[i]-a[i-l-1])%mod;
    divide(mid+1,r);
}

int main(){
    //File();
    read(n);
    math_init();
    ll tmp=1;
    po[1]=1;
    REP(i,2,n){
        tmp=tmp*2%mod;
        po[i]=po[i-1]*tmp%mod;
    }
    REP(i,1,n)g[i]=po[i]*ifac[i]%mod;
    divide(1,n);
    printf("%lld\n",(f[n]+mod)%mod);
    return 0;
}

原文地址:https://www.cnblogs.com/ylsoi/p/10336368.html

时间: 2024-08-30 08:10:05

[bzoj3456]城市规划——分治FFT的相关文章

[bzoj3456]城市规划:多项式,分治

Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一样, 那么这两个方案就是不同的, 否则就是相同的. 现在你需要求出一共有多少不同的方案. 好了, 这就是困扰阿狸的问题. 换句话说, 你需要求出n个点的

bzoj3456 城市规划

Description 求含有n个点有标号的无向联通图的个数(没有重边),n<=130000 Input 3 Output 4 正解:$分治FFT$/多项式求逆. 并没有权限号,但是某$oj$里有这道题.. 我们考虑递推,$f[i]$表示$i$个点的联通图个数,那么用总数减去不合法的数量. 考虑枚举$1$号点所在的联通块的点数,那么我们可以得到: $f[n]=2^{\binom{n}{2}}-\sum_{i=1}^{n-1}f[i]*\binom{n-1}{i-1}*2^{\binom{n-i}

2017 3 11 分治FFT

考试一道题的递推式为$$f[i]=\sum_{j=1}^{i} j^k \times (i-1)! \times \frac{f[i-j]}{(i-j)!}$$这显然是一个卷积的形式,但$f$需要由自己卷过来(我也不知到怎么说),以前只会生成函数的做法,但这题好像做不了(谁教教我怎么做),于是无奈的写了一发暴力,看题解发现是分治FFT.分治每层用$f[l]-f[mid]$与$a[1]-a[r-l]$做NTT.这样显然每个$f[l]-f[mid]$对$f[mid+1]-f[r]$的贡献都考虑到了.

【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

题目描述 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使得 a_i  opt b_j=c . 输入 第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数. 对于每组测试数据: 第一行是三个整数 n,m,q (1≤n,m,q≤50000) . 第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) . 第三行是 m

HDU Shell Necklace CDQ分治+FFT

Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose

看无可看 分治FFT+特征值方程

题面: 看无可看(see.pas/cpp/c) 题目描述 “What’s left to see when our eyes won’t open?” “若彼此瞑目在即,是否终亦看无可看?” ------来自网易云音乐<Golden Leaves-Passenger> 最后的一刻我看到了...... 一片昏暗? 我记起来了, 我看到,那里有一个集合S,集合S中有n个正整数a[i](1<=i<=n) 我看到,打破昏暗的密码: 记忆中的f是一个数列,对于i>1它满足f(i)=2*

【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

[BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += a 的 大小 如果 a 中 只有 1 个点  退出 否则在a中选一个点x,在a中删除点x 那么a变成了几个小一点的树,对每个小树递归调用Solve我们注意到的这个算法的时间复杂度跟选择的点x是密切相关的.如果x是树的重心,那么时间复杂度就是O(nlogn)但是由于WJMZBMR比较傻逼,他决定随机

[BZOJ4555][TJOI2016&amp;HEOI2016]求和(分治FFT)

解法一:容易得到递推式,可以用CDQ分治+FFT 代码用时:1h 比较顺利,没有低级错误. 实现比较简单,11348ms #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) typedef long long ll; using namespace std; const int N=(1<<18)+100,P=998244353,g=3; int n,re

【XSY2166】Hope 分治 FFT

题目描述 对于一个\(1\)到\(n\)的排列\(a_1,a_2,a_3,\ldots,a_n\),我们定义这个排列的\(P\)值和\(Q\)值: 对于每个\(a_i\),如果存在一个最小的\(j\)使得\(i<j\)且\(a_i<a_j\),那么将\(a_i\)和\(a_j\)连一条无向边.于是就得到一幅图.计算这幅图每个联通块的大小,将它们相乘,得到\(P\).记\(Q=P^k\). 对于\(1\)到\(n\)的所有排列,我们想知道它们的\(Q\)值之和.由于答案可能很大,请将答案对\(9