吴恩达机器学习课时3:监督学习

一、简介

  0.example:假设你要对房价进行预测,横轴是不同房屋的平方英尺数,纵轴是不同房子的价格,单位是千美元。那么现在有了这些数据,假设你现在有一栋150平方英尺的房子,你想把这个房子卖掉,想知道能卖多少钱。那么什么样的学习算法能帮到你呢?

   

  学习算法能做的一件事就是根据数据画一条直线来拟合数据,如下图,基于此看上去,房子大约可以卖15万美元

    

    

  但这可能不是你可以唯一使用的学习算法,可以有一个更好的算法,除了用直线来进行拟合数据,可以使用二次函数或者二阶多项式,来拟合数据会更好,如果此时在这里做一个预测,看上去能卖到将近20w美元:

  

  1.上面就是一个监督学习的例子。监督学习是指我们给算法一个数据集,其中包含了一个正确的答案,也就是我们给它一个房价数据集,在这个数据集中的每个样本,我们都给出正确的卖价,即这个房子的实际卖价,算法的目的是给出更多正确的答案。上面这个问题也被称为回归问题。回归指的是预测的数值是连续的。回归这个术语是指预测连续值的属性。

  2.接下来看另外一个监督学习的例子。

  (1)假设你想查看医疗记录,并且设法预测乳腺癌是恶性的还是良性的,假设某人发现了一个乳腺肿瘤,恶性肿瘤就是有害且危险的,良性肿瘤是无害的,显然人们很关心这个。在我们收集的数据集中,横轴是肿瘤的尺寸,纵轴用1或0代表是或者否,即我们看到的肿瘤样本是否是恶性的。如下图所示,下面这行的五个样本是良性的样本,上面一行的五个肿瘤样本对应纵轴上的1。假设有个人很不幸得了乳腺癌,假设肿瘤是接近下面的这个位置,机器学习所要解决的问题是,肿瘤是良性还是恶性的概率。用更专业的属于来说,这就是一个分类的问题,分类是指设法预测一个离散值输出,0或1,恶性或者良性。在实际分类问题中,有时的输出可能有两个或者两个以上的输出,在实际例子中,可能有三种类型的乳腺癌,因此可能要设法预测离散值0、1、2或3,0表示是良性的即没有癌症,1表示第一种癌症,三种之一,2是指第二种癌症,3就表示第三种癌症,这也是一个分类问题,因为这一世一组离散值的输出

  在分类问题中,还有另一种方法来绘制这些数据,我们用不同的符号来绘制这些数据,我们用O表示良性肿瘤,用x表示恶性肿瘤,将上面的数据集对应下来。

  在这个例子中,我们只用了一个特征或者属性,即肿瘤的大小来预测肿瘤是恶性的还是良性的

  (2)假设我们直到了肿瘤的大小和病人的年龄,在这种情况下,数据集就是这样的,我们可以用直线来分离这两类瘤:

    在这个例子中,我们有两种特征,即病人年纪和肿瘤的大小。在其他机器学习算法中,往往会有更多的特征

原文地址:https://www.cnblogs.com/bigdata-stone/p/10290498.html

时间: 2024-11-03 20:21:52

吴恩达机器学习课时3:监督学习的相关文章

【吴恩达机器学习】学习笔记——1.5无监督学习

1 无监督学习:在不知道数据点的含义的情况下,从一个数据集中找出数据点的结构关系. 2 聚类算法:相同属性的数据点会集中分布,聚集在一起,聚类算法将数据集分成不同的聚类.也就是说,机器不知道这些数据点具体是什么属性,到底是干什么的,但是可以将具有相同属性的数据点归为一类. 3 无监督学习的应用: 大型计算机集群:找出趋于协同工作的机器,将其放在一起将提高效率 社交网络分析:找出哪些人之间是好朋友的关系,哪些仅仅是认识 市场分割:将客户分类,找出细分市场,从而更有效的进行销售 天文数据分析:星系是

吴恩达机器学习4

逻辑回归 逻辑回归是一种用来解决当输出的y全部都是1或者0这种监督学习的机器学习算法.其目标就是最小化预测值和训练集之间的错误. 举个栗子:猫和没有猫 通过以向量x形式给出的一张图片,我们的目标就是判断这张图片中有没有猫 给x,y'=P(y=1|x)  其中 0<=y'<=1 在逻辑回归中我们所需要利用的参数有: 1.输入特征向量:x∈Rnx,其中nx表示特征的数目 2.训练的集合:y∈0,1 3.权值 :W∈Rnx,其中nx表示特征的数目 4.偏值:b∈R 5.输出:y∈σ(WTx+b) 6

【吴恩达机器学习】学习笔记——2.1单变量线性回归算法

1 回顾1.1 监督学习定义:给定正确答案的机器学习算法分类:(1)回归算法:预测连续值的输出,如房价的预测(2)分类算法:离散值的输出,如判断患病是否为某种癌症1.2 非监督学习定义:不给定数据的信息的情况下,分析数据之间的关系.聚类算法:将数据集中属性相似的数据点划分为一类. 2 单变量线性回归算法2.1 符号定义m = 训练样本的数量x = 输入变量y = 输出变量2.2 工作方式训练集通过学习算法生成线性回归函数hypothesis  hθ(x) = θ0 + θ1x 原文地址:http

Coursera-AndrewNg(吴恩达)机器学习笔记——第一周

一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习

按部就班的吴恩达机器学习网课用于讨论(1)

机器学习是什么 给予计算机学习能力,应用场景主要有:垃圾邮件识别,下棋,房价预测等等. 监督学习 监督学习的数据集由正确答案组成, 有回归问题(推测出连续值,如房价),分类问题(推测出离散的输出,如鉴别肿瘤的种类) 无监督学习 数据集没有标签,应用领域如:谷歌同类新闻推送,多DNA的特定相同基因鉴别,计算机集群的协同效率,朋友圈自动分组,顾客消费习惯消费细分消费市场,语音过滤取出等. 单变量线性回归 房价: 模型表示: 代价函数 原文地址:https://www.cnblogs.com/bai2

吴恩达机器学习3

二分分类 在一个二分分类的问题中间,结果总是离散输出的 比如:账户被黑客入侵(1)或者被盗(0):肿瘤是恶性的(1)还是良性的(0) 举个例子:是不是一个猫 目标是训练分类器,其中输入是一张图片所产生的特征向量,并且预测相应的标签是1还是0.在这种情况下,如果是1则表明是猫的图像,0则表示不是猫的图像 通常情况下,一张图片在电脑里面被存为三色素:红,绿和蓝.这三种颜色分别产生了三个矩阵,这三个矩阵拥有相同的大小.比如说,如果一张图片的大小为64*64,则三个矩阵的大小都是64*64 单元格中的值

Coursera-AndrewNg(吴恩达)机器学习笔记——第三周

一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为y?{0,1},0:"Negative Class",1:"Possitive Class". 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1): 其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下: 理解预测函数hθ(x)的

吴恩达机器学习笔记-第三周

六.逻辑回归 6.1 分类问题 对于二分类问题, 我们一般将结果分为0/1,在理解逻辑回归时可以引入感知机,感知机算是很早的分类器,但因为感知机是分布函数,也就是输出的值小于某一临界值,则分为-1,大于某一临界值,则分为1,但由于其在临界点处不连续,因此在数学上不好处理,而且感知机分类比较粗糙,无法处理线性不可分的情况,因此引入了逻辑回归,逻辑回归相当于用一个逻辑函数来处理回归的值,导致最终输出的值在[0, 1]范围内,输入范围是?∞→+∞,而值域光滑地分布于0和1之间. 小于0.5的分为0类,

【吴恩达机器学习随笔】什么是机器学习?

定义 Tom Mitchell对机器学习定义为"计算机从经验E中学习,解决某一任务T,进行某一度量P,通过P测定在T上的表现因经验E而提高".定义个人觉得大体理解即可,如果扣文咬字去理解会十分痛苦,就不做过多解释了. 原文:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its perform